

Week 3: Centrality & Variability

■ EMSE 4575: Exploratory Data Analysis

🛱 January 27, 2021

Thanks for the heros 😂

Updates

Office hours are set (posted in #links in slack & on BB) :

- 5-7pm Mondays w/Jenny K.
- 4:30-6pm Tuesdays w/Lydia G.
- 7-9pm Tuesdays w/Saurav P.
- 2-4pm Fridays w/Prof. Helveston

Meet Lydia

Jenny has an announcement

Tip of the week:
theme_set()

Add "global" settings to all plots

```
library(knitr)
library(tidyverse)
library(here)
knitr::opts_chunk$set(
    warning = FALSE,
    message = FALSE,
    comment = "#>",
    fig.path = "figs/", # Plot save path
    fig.width = 7.252, # Plot dimensions
    fig.height = 4,
    fig.retina = 3 # Better plot resolution
```

theme_set(theme_bw(base_size = 20)) # Set theme for all ggplots

ggplot(mtcars) +
 geom_point(aes(x = mpg, y = hp))

Default theme

theme_bw(base_size = 20)

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

24,901

Earth's circumference at the equator: 24,901 miles

Types of Data

Categorical

Subdivide things into groups

- What type?
- Which category?

Numerical

Measure things with numbers

- How many?
- How much?

Categorical (discrete) variables

Nominal

- Order doesn't matter
- Differ in "name" (nominal) only

e.g. country in TB case data:

Ordinal

- Order matters
- Distance between units not equal

e.g.: Placement 2017 Boston marathon:

#>	#	A tibble: 6	x 4			#>	#	A tibble:	6 x 3	
#>		country	year	cases	population	#>		Placement	`Official Time`	Name
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	#>		<dbl></dbl>	<time></time>	<chr></chr>
#>	1	Afghanistan	1999	745	19987071	#>	1	1	02:09:37	Kirui, Geo
#>	2	Afghanistan	2000	2666	20595360	#>	2	2	02:09:58	Rupp, Gale
#>	3	Brazil	1999	37737	172006362	#>	3	3	02:10:28	Osako, Sug
#>	4	Brazil	2000	80488	174504898	#>	4	4	02:12:08	Biwott, Sh
#>	5	China	1999	212258	1272915272	#>	5	5	02:12:35	Chebet, Wi
#>	6	China	2000	213766	1280428583	#>	6	6	02:12:45	Abdirahman

Numerical data

Interval

- Numerical scale with arbitrary starting point
- No "0" point
- Can't say "x" is double "y"

e.g.: temp in Beaver data

#>		day	time	temp	activ	
#>	1	346	840	36.33	0	
#>	2	346	850	36.34	0	
#>	3	346	900	36.35	0	
#>	4	346	910	36.42	0	
#>	5	346	920	36.55	0	
#>	6	346	930	36.69	0	

Ratio

- Has a "0" point
- Can be described as percentages
- Can say "x" is double "y"

e.g.: height & speed in wildlife impacts

#> #	A tibble: 6 x 3			
#>	incident_date	height	speed	
#>	<dttm></dttm>	<dbl></dbl>	<dbl></dbl>	
#> 1	2018-12-31 00:00:00	700	200	
#> 2	2018-12-27 00:00:00	600	145	
#> 3	2018-12-23 00:00:00	0	130	
#> 4	2018-12-22 00:00:00	500	160	
#> 5	2018-12-21 00:00:00	100	150	4.0
#> 6	2018-12-18 00:00:00	4500	250	13 /

63

Key Questions

Categorical

Does the order matter?

Yes No Ordinal Nominal

Numerical

Is there a "baseline"?

Yes No

Ratio Interval

Be careful of how variables are encoded!

When numbers are categories

- "Dummy coding": e.g., passedTest = 1 or 0)
- "North", "South", "East", "West" = 1, 2, 3, 4

When ratio data are discrete (i.e. counts)

- Number of eggs in a carton, heart beats per minute, etc.
- Continuous variables measured discretely (e.g. age)

Time

- As ordinal categories: "Jan.", "Feb.", "Mar.", etc.
- As interval scale: "Jan. 1", "Jan. 2", "Jan. 3", etc.
- As *ratio* scale: "30 sec", "60 sec", "70 sec", etc.

Quick practice: What's the data type?

Decide here (link also in #classroom)

wildlife_impacts %>%
 filter(!is.na(cost_repairs_infl_adj)) %>%
 select(incident_date, time_of_day, species, cost_repairs_infl_adj)

#>	#	A tibble: 61	L5 x 4			
#>		incident_da	ate	<pre>time_of_day</pre>	species	<pre>cost_repairs_infl_adj</pre>
#>		<dttm></dttm>		<chr></chr>	<chr></chr>	<dbl></dbl>
#>	1	2018-10-25	00:00:00	Day	Unknown bird – large	1000
#>	2	2018-09-05	00:00:00	<na></na>	Unknown bird – medium	200
#>	3	2018-08-09	00:00:00	Day	Semipalmated sandpiper	10000
#>	4	2018-06-24	00:00:00	Day	Unknown bird – large	100000
#>	5	2018-02-18	00:00:00	Day	Rough-legged hawk	20000
#>	6	2018-01-05	00:00:00	Night	Brant	487000
#>	7	2017-10-31	00:00:00	Day	Unknown bird – small	51
#>	8	2017-10-12	00:00:00	<nā></nā>	Swainson's thrush	5120
#>	9	2017-09-17	00:00:00	Day	Cattle egret	531763
#>	10	2017-09-16	00:00:00	<na></na>	Unknown bird - medium	102
#>	#	with 605 n	nore rows			

63

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

Summary Measures:

This week: Centrality & Variability

Next week: Correlation

Centrality (a.k.a. The "Average" Value)

A single number representing the *middle* of a set of numbers

Mean: $\frac{\text{Sum of values}}{\# \text{ of values}}$

Median: "Middle" value (50% of data above & below)

Mode: Most frequent value (usually for categorical data)

Mean isn't always the "best" choice

```
wildlife_impacts %>%
    filter(! is.na(height)) %>%
    summarise(
        mean = mean(height),
        median = median(height))
```

#> # A tibble: 1 x 2
#> mean median
#> <dbl> <dbl>
#> 1 984. 50

Percent of data below mean:

#> [1] "73**.**9%"

Beware the "flaw of averages"

What happened to the statistician that crossed a river with an average depth of 3 feet?

...he drowned

Variability ("Spread")

Standard deviation: distribution of values relative to the mean

$$s=\sqrt{rac{\sum_{i=1}^{N}(x_i-ar{x})^2}{N-1}}$$

Interquartile range (IQR): $Q_3 - Q_1$ (middle 50% of data)

Range: max - min

Example: Days to ship

Complaints are coming in about orders shipped from warehouse B, so you collect some data:

daysToShip

# # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 7 8 9 10 11	order 1 2 3 4 5 6 7 8 9 10 11	warehouseA 3 3 4 4 5 5 5 5 5 5	warehouseB 1 1 3 3 4 5 5 5 5 6 7
#>	11	11	5	7
#>	12	12	5	10

Here, **averages** are misleading:

```
daysToShip %>%
  gather(warehouse, days, warehouseA:warehouseB) %>
  group_by(warehouse) %>%
  summarise(
      mean = mean(days),
      median = median(days))
```

#>	#	A tibble: 2	2 x 3	
#>		warehouse	mean	median
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>
#>	1	warehouseA	4.25	4.5
#>	2	warehouseB	4.25	4.5

Example: Days to ship

Complaints are coming in about orders shipped from warehouse B, so you collect some data:

daysToShip

	_	_		
#>		order	warehouseA	warehouseB
#>	1	1	3	1
#>	2	2	3	1
#>	3	3	3	1
#>	4	4	4	3
#>	5	5	4	3
#>	6	6	4	4
#>	7	7	5	5
#>	8	8	5	5
#>	9	9	5	5
#>	10	10	5	6
#>	11	11	5	7
#>	12	12	5	10

Variability reveals difference in days to ship:

```
daysToShip %>%
  gather(warehouse, days, warehouseA:warehouseB) %>
  group_by(warehouse) %>%
  summarise(
    mean = mean(days),
    median = median(days),
    range = max(days) - min(days),
    sd = sd(days))
```

#>	#	A tibble:	2 x 5			
#>		warehouse	mean	median	range	sd
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	warehouseA	4.25	4.5	2	0.866
#>	2	warehouseB	4.25	4.5	9	2.70

Example: Days to ship

Difference from mean days to ship

Interpreting the standard deviation

$$s=\sqrt{rac{\sum_{i=1}^{N}(x_i-ar{x})^2}{N-1}}$$

Outliers

Mean & Standard Deviation are sensitive to outliers

Outliers: $Q_1 - 1.5IQR$ or $Q_3 + 1.5IQR$

Extreme values: $Q_1 - 3IQR$ or $Q_3 + 3IQR$

data1 <- c(3,3,4,5,5,6,6,7,8,9)

data2 <- c(3,3,4,5,5,6,6,7,8,20)

- Mean: 5.6
- Standard Deviation: 2.01
- Median: 5.5
- IQR: 2.5

- Mean: 6.7
- Standard Deviation: 4.95
- Median: 5.5
- IQR: 2.5

Robust statistics for continuous data (less sensitive to outliers)

Centrality: Use *median* rather than *mean*

Variability: Use IQR rather than standard deviation

Practice with summary measurements

1) Read in the following data sets:

- milk_production.csv
- lotr_words.csv

2) For each variable in each data set, if possible, summarize its

- 1. Centrality
- 2. Variability

Break!

Stand up, Move around, Stretch!

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

"Visualizing data helps us think"

	А		В		(D)
	х	У	х	У	х	У	х	У
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
	6	7.24	6	6.13	6	6.08	8	5.25
	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99	82.51	99	82.51	99	82.5	99	82.51
Mean:	9	7.5	9	7.5	9	7.5	9	7.5
St. Dev:	3.3	2	3.3	2	3.3	2	3.3	2

Stephen Few (2009, pg. 6)

Anscombe's Quartet

Stephen Few (2009, pg. 6)

35 / 63

The data *type* determines how to summarize it

Nominal (Categorical)

Measures:

 Frequency counts / Proportions

Charts:

• Bars

Ordinal (Categorical)

Measures:

Charts:

• Bars

- Frequency counts / Proportions
- Centrality: Median, Mode
- Variability: IQR

Numerical (Continuous)

Measures:

- Centrality: Mean, median
- Variability: Range, standard deviation, IQR
- Charts:
 - Histogram
 - Boxplot

Summarizing Nominal data

Summarize with counts / percentages Visualize with bars

```
wildlife_impacts %>%
    count(operator, sort = TRUE) %>%
    mutate(p = n / sum(n))
```

#>	#	A tibble: 4 x 3		
#>		operator	n	р
#>		<chr></chr>	<int></int>	<dbl></dbl>
#>	1	SOUTHWEST AIRLINES	17970	0.315
#>	2	UNITED AIRLINES	15116	0.265
#>	3	AMERICAN AIRLINES	14887	0.261
#>	4	DELTA AIR LINES	9005	0.158

```
wildlife_impacts %>%
    count(operator, sort = TRUE) %>%
    ggplot() +
    geom_col(aes(x = n, y = reorder(operator, n)),
        width = 0.7) +
    labs(x = "Count", y = "Operator")
```


Summarizing Ordinal data

Summarize: Counts / percentages

```
wildlife_impacts %>%
    count(incident_month, sort = TRUE) %>%
    mutate(p = n / sum(n))
```

#>	# A	tibble:	12 x 3	3	
#>		incident_	_month	n	р
#>			<dbl></dbl>	<int></int>	<dbl></dbl>
#>	1		9	7980	0.140
#>	2		10	7754	0.136
#>	3		8	7104	0.125
#>	4		5	6161	0.108
#>	5		7	6133	0.108
#>	6		6	4541	0.0797
#>	7		4	4490	0.0788
#>	8		11	4191	0.0736
#>	9		3	2678	0.0470
#>	10		12	2303	0.0404
#>	11		1	1951	0.0342
#>	12		2	1692	0.0297

Visualize: Bars

Summarizing **continuous** variables

Histograms:

- Skewness
- Number of modes

Boxplots:

- Outliers
- Comparing variables

Histogram: Identify Skewness & # of Modes

Summarise:

Mean, median, sd, range, & IQR:

Visualize:

Histogram (identify skewness & modes)

<pre>summary(wildlife_</pre>	_impacts\$height)
------------------------------	-------------------

#>	Min.	1st	0u.	Median	Mean
	~ ~ ~				000.0
#>	0.0		0.0	50.0	983.8

```
ggplot(wildlife_impacts) +
  geom_histogram(aes(x = height), bins = 50) +
  labs(x = 'Height (ft)', y = 'Count')
```


Histogram: Identify Skewness & # of Modes

Height

Speed

ggplot(wildlife_impacts) +
 geom_histogram(aes(x = height), bins = 50)
 labs(x = 'Height (ft)', y = 'Count')

ggplot(wildlife_impacts) +
 geom_histogram(aes(x = speed), bins = 50)
 labs(x = 'speed (mph)', y = 'Count')

Boxplot: Identify outliers

Height

Speed

ggplot(wildlife_impacts) +
 geom_boxplot(aes(x = height)) +
 labs(x = 'Height (ft)', y = NULL)

Histogram

- Skewness
- Modes

Boxplot

• Outliers

Practicing visual summaries

1) Read in the following data sets:

- faithful.csv
- marathon.csv

2) Summarize the following variables using an appropriate chart (bar chart, histogram, and / or boxplot):

- faithful: eruptions
- faithful: waiting
- marathon: Age
- marathon: State
- marathon: Country
- marathon: `Official Time`

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

Two **Categorical** Variables

Summarize with a table of counts

wildlife_impacts %>%
 count(operator, time_of_day)

#>	# /	A tibble: 2	20 x 3			
#>		operator		<pre>time_of_day</pre>	n	
#>		<chr></chr>		<chr></chr>	<int></int>	
#>	1	AMERICAN /	AIRLINES	Dawn	458	
#>	2	AMERICAN /	AIRLINES	Day	7809	
#>	3	AMERICAN /	AIRLINES	Dusk	584	
#>	4	AMERICAN /	AIRLINES	Night	3710	
#>	5	AMERICAN /	AIRLINES	<na></na>	2326	
#>	6	DELTA AIR	LINES	Dawn	267	
#>	7	DELTA AIR	LINES	Day	4846	
#>	8	DELTA AIR	LINES	Dusk	353	
#>	9	DELTA AIR	LINES	Night	2090	
#>	10	DELTA AIR	LINES	<na></na>	1449	
#>	11	SOUTHWEST	AIRLINES	Dawn	394	
#>	12	SOUTHWEST	AIRLINES	Day	9109	

Two **Categorical** Variables

Convert to "wide" format with spread() to make it easier to compare values

```
wildlife_impacts %>%
    count(operator, time_of_day) %>%
    spread(key = time_of_day, value = n)
```

#>	#	A tibble: 4×6					
#>		operator	Dawn	Day	Dusk	Night	` <na>`</na>
#>		<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
#>	1	AMERICAN AIRLINES	458	7809	584	3710	2326
#>	2	DELTA AIR LINES	267	4846	353	2090	1449
#>	3	SOUTHWEST AIRLINES	394	9109	599	5425	2443
#>	4	UNITED AIRLINES	151	3359	181	1510	9915

Two **Categorical** Variables

Two **Continuous** Variables

Visualize with scatterplot - looking for *clustering* and/or *correlational* relationship

One Continuous, One Categorical

Visualize with **boxplot**

Practice with visualizing relationships

1) Read in the following data sets:

- marathon.csv
- wildlife_impacts.csv

2) Visualize the *relationships* between the following variables using an appropriate chart (bar plots, scatterplots, and / or box plots):

- marathon: Age & Official Time
- marathon: Country & Official Time
- wildlife_impacts: state & operator

Week 3: Centrality & Variability

1. Data Types

2. Measures of Centrality & Variability

BREAK

3. Visualizing Centrality & Variability

4. Relationships Between 2 Variables

5. Exploratory Data Analysis

Exploratory Analysis

Goal: **Form** hypotheses.

Improves quality of **questions**.

(do this in THIS class)

Confirmatory Analysis

Goal: **Test** hypotheses.

Improves quality of **answers**.

(do this in your stats classes)

Don't be Icarus

"Far better an approximate answer to the *right* question, which is often vague, than an exact answer to the *wrong* question, which can always be made precise."

— John Tukey

EDA is an iterative process to help you *understand* your data and ask better questions

Visualizing variation

Ask yourself:

- What type of variation occurs within my variables?
- What type of covariation occurs between my variables?

Check out these guides

Variation			Covariation		
			Categorical Y	Continuous Y	
Categorical	Bar Chart	Categorical X	Heatmap or Count	Boxplot	
Continuous	Histogram	Continuous X	Boxplot (with coord_flip)	Scatterplot (many to one) line chart (one to one)	

Practice doing EDA

1) Read in the candy_rankings.csv data sets

2) Preview the data, note the data types and what each variable is.

3) Visualize (at least) three *relationships* between two variables (guided by a question) using an appropriate chart:

- Bar chart
- Scatterplot
- Boxplot

Start thinking about research questions

Writing a research question

Follow these guidelines - your question should be:

- **Clear**: your audience can easily understand its purpose without additional explanation.
- **Focused**: it is narrow enough that it can be addressed thoroughly with the data available and within the limits of the final project report.
- **Concise**: it is expressed in the fewest possible words.
- **Complex**: it is not answerable with a simple "yes" or "no," but rather requires synthesis and analysis of data.
- **Arguable**: its potential answers are open to debate rather than accepted facts (do others care about it?)

Writing a research question

Bad question: Why are social networking sites harmful?

• Unclear: it does not specify *which* social networking sites or state what harm is being caused; assumes that "harm" exists.

Improved question: How are online users experiencing or addressing privacy issues on such social networking sites as Facebook and Twitter?

• Specifies the sites (Facebook and Twitter), type of harm (privacy issues), and who is harmed (online users).

Other good examples: See the Example Projects Page page

Start self-organizing for projects

Find your topic / teammate(s) here (link also in #classroom)