

Week 4: Correlation

III EMSE 4575: Exploratory Data Analysis
2 John Paul Helveston
畾 February 03, 2021

Tip of the week

All data are biased

Abraham Wald

Today's data

msleep <- read_csv(here::here('data', 'msleep.csv'))

New packages:

```
install.packages('HistData')
install.packages('palmerpenguins')
install.packages('GGally')
```


Week 4: Correlation

1. What is correlation?
2. Visualizing correlation BREAK
3. Linear models
4. Visualizing linear models

Week 4: Correlation

1. What is correlation?

2. Visualizing correlation BREAK
3. Linear models
4. Visualizing linear models

Some pretty racist origins in eugenics ("well born")

Sir Francis Galton (1822-1911)

- Charles Darwin's cousin.
- "Father" of eugenics.
- Interested in heredity.

Karl Pearson (1857-1936)

- Galton's (hero-worshiping) protégé.
- Defined correlation equation.
- "Father" of mathematical statistics.

Galton's family data

Galton, F. (1886). "Regression towards mediocrity in hereditary stature". The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246-263.

Galton's question: Does marriage selection indicate a relationship between the heights of husbands and wives? (He called this "assortative mating")
"midparent height" is just a scaled mean:

[^0]```
library(HistData)
galtonScatterplot <- ggplot(GaltonFamilies) +
 geom_point(aes(x = midparentHeight,
 y = childHeight),
 size = 0.5, alpha = 0.7) +
 theme_classic() +
 labs(\overline{x = 'Midparent height (inches)',}
 y = 'Child height (inches)')
```



# How do you measure correlation? 

Pearson came up with this:

$$
r=\frac{\operatorname{Cov}(x, y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}
$$

## How do you measure correlation?

$$
r=\frac{\operatorname{Cov}(x, y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}
$$

Assumptions:


1. Variables must be interval or ratio
2. Linear relationship


## How do you interpret $r$ ?

$$
r=\frac{\operatorname{Cov}(x, y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}
$$

```
cor(x = GaltonFamilies$midparentHeight,
 y = GaltonFamilies$childHeight,
 method = 'pearson')
```

\#> [1] 0.3209499
Interpretation:

- $-1 \leq r \leq 1$
- Closer to 1 is stronger correlation
- Closer to 0 is weaker correlation



## What does $r$ mean?

- $\pm 0.1-0.3$ : Weak
- $\pm 0.3-0.5$ : Moderate
- $\pm 0.5-0.8$ : Strong
- $\pm 0.8-1.0$ : Very strong






# Visualizing correlation is...um...easy, right? 

## guessthecorrelation.com <br> Click here to vote!

# The datasaurus 

|  | $X$ Mean: 54.26 |
| :---: | :---: |
| $\therefore \quad \square$ | Y Mean: 47.83 |
|  | X SD : 16.76 |
|  | Y SD : 26.93 |
| $\cdots$ | Corr. : -0.06 |

## (More here)




## Coefficient of determination: $r^{2}$

Percent of variance in one
variable that is explained by the other variable

| $r$ | $r^{2}$ |
| :---: | :---: |
| 0.1 | 0.01 |
| 0.2 | 0.04 |
| 0.3 | 0.09 |
| 0.4 | 0.16 |
| 0.5 | 0.25 |
| 0.6 | 0.36 |
| 0.7 | 0.49 |
| 0.8 | 0.64 |
| 0.9 | 0.81 |
| 1.0 | 1.00 |

## You should report both $r$ and $r^{2}$

Correlation between parent and child height is 0.32 , therefore $10 \%$ of the variance in the child height is explained by the parent height.

## Correlation != Causation

## X causes Y

- Training causes improved performance


## Y causes X

- (Good / bad) performance causes people to train harder.


## Z causes both X \& Y

- Commitment and motivation cause increased training and better performance.


## Be weary of dual axes!

## (They can cause spurious correlations)

Dual axes


Single axis


[^1]© HBR.OR

## Outliers






## Pearson correlation is highly sensitive to outliers



## Spearman's rank-order correlation

$r=\frac{\operatorname{Cov}(x, y)}{\operatorname{sd}(x) * \operatorname{sd}(y)}$

- Separately rank the values of X \& Y.
- Use Pearson's correlation on the ranks instead of the $x \& y$ values.

Assumptions:

- Variables can be ordinal, interval or ratio
- Relationship must be monotonic (i.e. does not require linearity)


## Spearman correlation more robust to outliers



## Spearman correlation more robust to outliers



| Pearson Spearman |  |
| :---: | ---: |
| -0.56 | 0.53 |
| 0.39 | 0.69 |
| 0.94 | 0.81 |
| 0.38 | 0.76 |
| 0.81 | 0.79 |
| 0.31 | 0.70 |
| 0.95 | 0.81 |
| 0.51 | 0.75 |
| -0.56 | 0.53 |



## Summary of correlation

- Pearson's correlation: Described the strength of a linear relationship between two variables that are interval or ratio in nature.
- Spearman's rank-order correlation: Describes the strength of a monotonic relationship between two variables that are ordinal, interval, or ratio. It is more robust to outliers.
- The coefficient of determination ( $r^{2}$ ) describes the amount of variance in one variable that is explained by the other variable.
- Correlation != Causation

R command (hint: add use = "complete. obs" to drop NA values)

```
pearson <- cor(x, y, method = "pearson", use = "complete.obs")
spearman <- cor(x, y, method = "spearman", use = "complete.obs")
```


## Week 4: Correlation

1. What is correlation?
2. Visualizing correlation BREAK
3. Linear models
4. Visualizing linear models

## Scatterplots: The correlation workhorse

```
scatterplot <- ggplot(mtcars) +
 geom_point(aes(x = mpg, y = hp),
 size = 2, alpha = 0.7) +
 theme_classic(base_size = 20) +
 labs(\overline{x = 'Fuel economy (mpg)',}
 y = 'Engine power (hp)')
```

scatterplot


## Adding a correlation label to a chart

Make the correlation label

```
corr <- cor(
 mtcars$mpg, mtcars$hp,
 method = 'pearson')
corrLabel <- paste('r = ', round(corr, 2))
```

Add label to the chart with annotate()

```
scatterplot +
 annotate(geom = 'text',
 x = 25, y = 310,
 label = corrLabel,
 hjust = 0, size = 7)
```



## Visualize all the correlations



## Visualize all the correlations: ggcorr( )

library('GGally')
mtcars \%>\% ggcorr()


## Visualizing correlations: ggcorr( )

library('GGally')
mtcars \%>\%
ggcorr(label = TRUE, label_size = 3, label_round = 2)


## Visualizing correlations: ggcorr( )

```
ggcor_mtcars_final <- mtcars %>%
 ggcorr(label = TRUE,
 label_size = 3,
 label_round = 2,
 label_color = 'white',
 nbreaks = 5,
 palette = "RdBu")
```



## Pearson

## Spearman

```
mtcars %>%
 ggcorr(label = TRUE,
 label_size = 3,
 label_round = 2,
 method = c("pairwise", "pearson"
```

mtcars \%>\%
ggcorr(label = TRUE,
label_size = 3,
label_round = 2,
method = c("pairwise", "spearman


## Correlograms: ggpairs()

```
library('GGally')
```

```
mtcars %>%
 select(mpg, cyl, disp, hp, wt)
 ggpairs()
```

- Look for linear relationships
- View distribution of each variable



## Correlograms: ggpairs()

```
library('GGally')
```

```
mtcars %>%
```

    select(mpg, cyl, disp, hp, wt)
    ggpairs() +
    theme_classic()
    - Look for linear relationships
- View distribution of each variable



## Your turn

Using the penguins data frame:

## palmerpenguins library.

1. Find the two variables with the largest correlation in absolute value (i.e. closest to -1 or 1).
2. Create a scatter plot of those two variables.
3. Add an annotation for the Pearson correlation coefficient.


Artwork by @allison_horst

## Simpson's Paradox: when correlation betrays you

Body mass vs. Bill depth
Body mass vs. Bill depth



## Break!

## Stand up, Move around, Stretch!



## Week 4: Correlation

1. What is correlation?
2. Visualizing correlation BREAK
3. Linear models
4. Visualizing linear models

## Palmer Penguins

The correlation of 0.87 means that the body mass (g) explains about 75\% of the variation in the flipper length (mm).


## Palmer Penguins

The correlation of 0.87 means that the body mass (g) explains about 75\% of the variation in the flipper length (mm).

Now let's fit a model to these points!


## Modeling basics

Two parts to a model:

1. Model family: e.g., $y=a x+b$
2. Fitted model: e.g., $y=3 x+7$

Here is some simulated data


## Modeling basics

Two parts to a model:

1. Model family: linear model:
$y=a x+b$
There are an infinite number of possible models


## Modeling basics

Two parts to a model:

1. Model family: linear model:
$y=a x+b$
2. Fitted model: How to choose the "best" $a$ and $b$ ?

There are an infinite number of possible models


## Modeling basics

Two parts to a model:

1. Model family: linear model:

$$
y=a x+b
$$

2. Fitted model: How to choose the "best" $a$ and $b$ ?

We need to come up with some measure of "distance" from the model to the data

Compute the "residuals":
The distance between the model line and the data


## Residual: $y_{i}-y_{i}^{\prime}$

Residual: The distance between the model line and the data


Sum of squared residuals: $\mathrm{SSR}=\sum_{i=1}^{n}\left(y_{i}-y_{i}^{\prime}\right)^{2}$

Residual: The distance between the model line and the data


## Search algorithm

1): Pick a model ( $a$ and $b$ ): 2): Compute the SSR:

$$
y=a x+b \quad \text { SSR }=\sum_{i=1}^{n}\left(y_{i}-y_{i}^{\prime}\right)^{2}
$$

3): Repeat steps 1 \& 2 until the smallest SSR is found



## Fitting a linear model in R

```
model <- lm(formula = y ~ x, data = data)
```


## Example: Penguin data

```
model <- lm(
 formula = body_mass_g ~ flipper_length_mm,
 data = penguins)
```

Get coefficients $(a \& b$ in $y=a x+b)$

```
coef(model)
```

| \#> | (Intercept) | flipper_length_mm |
| ---: | ---: | ---: |
| $\#>$ | -5780.83136 | 49.68557 |

## Fitting a linear model in R

```
model <- lm(formula = y ~ x,
 data = data)
```


## Example: Penguin data

```
model <- lm(
 formula = body_mass_g ~ flipper_length_mm
 data = penguins)
```


## Get coefficients

```
coef(model)
```


$\begin{array}{lr}\text { \#> } & \text { (Intercept) } \\ \text { \#> } & \text { flipper_length_mm } \\ 49.68557\end{array}$

## Interpreting results



Artwork by @allison_horst

## Example write up for Penguin data

The correlation between flipper length ( mm ) and body mass ( g ) is 0.87. Therefore, ~75\% of the variance in body mass is explained by flipper length.

The slope of the best fitting regression line indicates that body mass increased by $\mathbf{4 9 . 7} \mathrm{g}$ as flipper length increased by one
 mm .

## Making predictions

Interpolation is OK: You may predict values of $y$ for values of $x$ that were not observed but are within the range of the observed values of $x$.


Extrapolation is BAD: You should NOT predict values of $y$ using values of $x$ that are outside the observed range of $x$.

My HOBBY: EXTRAPOLATING


## Repeat: Extrapolation is BAD

"Extrapolation of these trends to the 2008 Olympiad indicates that the women's 100metre race could be won in a time of $10.57 \pm 0.232$ seconds and the men's event in $9.73 \pm 0.144$ seconds. Should these trends continue, the projections will intersect at the 2156 Olympics, when for the first time ever - the winning women's 100-metre sprint time of 8.079 seconds will be lower than that of the men's winning time of 8.098 seconds (Fig. 1)."


Tatem, A. J., Guerra, C. A., Atkinson, P. M., \& Hay, S. I. (2004). Momentous sprint at the 2156 Olympics? Nature, 431(7008), 525-525. View online

## Symantics

These all mean the same thing:

- "Use X to predict Y"
- "Regress Y on X"
- "Regression of Y on X"

```
model <- lm(formula = y ~ x,
 data = data)
```



## Symantics

```
model <- lm(formula = y ~ x,
data = data)
```


## Y: Dependent variable

- Outcome variable
- Response variable
- Regressand
- Left-hand variable


## X: Independent variable

- Predictor variable
- Explanatory variable
- Regressor
- Right-hand variable


## Week 4: Correlation

1. What is correlation?
2. Visualizing correlation BREAK
3. Linear models
4. Visualizing linear models

## Adding the correlation annotation

```
Make the correlation label
corr <- cor(
 penguins$body_mass_g, penguins$flipper_length_mm
 method = 'pearson', use = "complete.obs")
corrLabel <- paste("r = ", round(corr, 2))
Make the chart!
ggplot(penguins, aes(x = flipper_length_mm, y = body
 geom_point(size = 1, alpha = 0.7) +
 annotate(geom = 'text', x = 175, y = 6000,
 label = corrLabel,
 hjust = 0, size = 5) +
 theme_classic(base_size = 20) +
 labs(\overline{x = "Flipper length (mm)",}
 y = "Body mass (g)")
```



```
Make correlation label
corrLabel <- paste("r = ", round(cor(
 penguins$body_mass_g, penguins$flipper_length_mm
 method = 'pearson', use = "complete.obs"'), 2))
Make model label
model <- lm(
 formula = body_mass_g ~ flipper_length_mm,
 data = penguins)
coefs <- round(coef(model), 2)
modelLabel <- paste('y = ', coefs[1], ' + ', coefs[2.
Make the chart!
ggplot(penguins, aes(x = flipper_length_mm, y = body_
 geom_point(size = 1, alpha = 0.7)
 geom_smooth(method = 'lm', se = FALSE) +
 annotate(geom = 'text', x = 175, y = 6000,
 label = corrLabel,
 hjust = 0, size = 5) +
 annotate(geom = 'text', x = 175, y = 5700,
 label = modelLabel, color = "blue",
 hjust = 0, size = 5)
 theme_classic(base_size = 20) +
 labs(\overline{x = "Flipper Tength (mm)",}
 y = "Body mass (g)")
```


## Add correlation + model



## Your turn

Using the ms leep data frame:

1. Create a scatter plot of brainwt versus bodywt.
2. Include an annotation for the Pearson correlation coefficient.
3. Include an annotation for the best fit line.

Bonus: Compare your results to a log-linear relationship by converting the $x$ and $y$ variables to the log of $x$ and $y$, like this:

```
model <- lm(log(x) ~ log(y), data = msleep)
```

You can also convert your plot to log axes by adding these layers:

```
plot +
 scale_x_log10() +
 scale_y_log10()
```


## Projects

## Take your time and take breaks




Artwork by @allison_horst

## Start thinking about research questions

## Writing a research question

Follow these guidelines - your question should be:

- Clear: your audience can easily understand its purpose without additional explanation.
- Focused: it is narrow enough that it can be addressed thoroughly with the data available and within the limits of the final project report.
- Concise: it is expressed in the fewest possible words.
- Complex: it is not answerable with a simple "yes" or "no," but rather requires synthesis and analysis of data.
- Arguable: its potential answers are open to debate rather than accepted facts (do others care about it?)


## Writing a research question

## Bad question: Why are social networking sites harmful?

- Unclear: it does not specify which social networking sites or state what harm is being caused; assumes that "harm" exists.

Improved question: How are online users experiencing or addressing privacy issues on such social networking sites as Facebook and Twitter?

- Specifies the sites (Facebook and Twitter), type of harm (privacy issues), and who is harmed (online users).

Other good examples: See the Example Projects Page page


[^0]:    midparentHeight $=($ father $+1.08 * m o t h e r) / 2$

[^1]:    ROM "BEWARE SPURIOUS CORRELATIONS," JUNE 2015

