class: middle, inverse .leftcol30[ <center> <img src="https://raw.githubusercontent.com/emse-eda-gwu/2022-Fall/master/images/logo.png" width=250> </center> ] .rightcol70[ # Week 11: .fancy[Maps] ###
EMSE 4572: Exploratory Data Analysis ###
John Paul Helveston ###
November 09, 2022 ] --- ## Today's data ```r milk_production <- read_csv(here::here('data', 'milk_production.csv')) us_coffee_shops <- read_csv(here::here('data', 'us_coffee_shops.csv')) ``` ## New packages: ```r install.packages('maps') install.packages('mapproj') install.packages('sf') install.packages('rgeos') install.packages('rnaturalearth') devtools::install_github("ropensci/rnaturalearthhires") devtools::install_github("ropensci/rnaturalearthdata") ``` --- class: inverse, middle # Week 11: .fancy[Maps] ## 1. Plotting maps ## 2. Adding data to maps ### BREAK ## 3. Projections --- class: inverse, middle # Week 11: .fancy[Maps] ## 1. .orange[Plotting maps] ## 2. Adding data to maps ### BREAK ## 3. Projections <!-- How to do it: https://www.r-graph-gallery.com/map.html --> --- # How to make a map #### Step 1: Load a shape file a. Use a library b. Read in a shape file -- #### Step 2: Plot the shape file a. Polygon data: `geom_polygon()` b. Simple Features data: `geom_sf()` --- ## Polygon maps .leftcol60[.code70[ Get the "World" shape file ```r library(ggplot2) *world <- map_data("world") head(world) ``` ``` #> long lat group order region subregion #> 1 -69.89912 12.45200 1 1 Aruba <NA> #> 2 -69.89571 12.42300 1 2 Aruba <NA> #> 3 -69.94219 12.43853 1 3 Aruba <NA> #> 4 -70.00415 12.50049 1 4 Aruba <NA> #> 5 -70.06612 12.54697 1 5 Aruba <NA> #> 6 -70.05088 12.59707 1 6 Aruba <NA> ``` ]] --- ## Polygon maps .leftcol60[.code70[ Get the "World" shape file ```r library(ggplot2) *world <- map_data("world") ``` Make the plot with `geom_polygon()` ```r ggplot(world) + * geom_polygon(aes(x = long, y = lat, group = group), fill = "grey90", color = "grey60") ``` ]] .rightcol40[ <br> <center> <img src="images/plots/polygon_world.png"> <center> ] --- ## Polygon maps .leftcol60[.code70[ Get the "US States" shape file ```r library(ggplot2) *us_states <- map_data("state") ``` Make the plot with `geom_polygon()` ```r ggplot(us_states) + * geom_polygon(aes(x = long, y = lat, group = group), fill = "grey90", color = "grey60") ``` ]] .rightcol40[ <br> <center> <img src="images/plots/polygon_us.png"> <center> ] --- ### Simple Features (sf) maps .leftcol40[.code70[ Library data from [Natural Earth](http://www.naturalearthdata.com/downloads/50m-cultural-vectors/) ```r library(rnaturalearth) library(rnaturalearthdata) *world <- ne_countries( * scale = "medium", * returnclass = "sf") world %>% select(name, geometry) %>% head() ``` ]] -- .rightcol60[.code70[ ``` #> Simple feature collection with 6 features and 1 field #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -73.36621 ymin: -22.40205 xmax: 109.4449 ymax: 41.9062 #> CRS: +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 #> name geometry #> 0 Zimbabwe MULTIPOLYGON (((31.28789 -2... #> 1 Zambia MULTIPOLYGON (((30.39609 -1... #> 2 Yemen MULTIPOLYGON (((53.08564 16... #> 3 Vietnam MULTIPOLYGON (((104.064 10.... #> 4 Venezuela MULTIPOLYGON (((-60.82119 9... #> 5 Vatican MULTIPOLYGON (((12.43916 41... ``` ]] --- ## Simple Features (sf) maps .leftcol60[.code70[ Get the "World" shape file ```r library(rnaturalearth) library(rnaturalearthdata) world <- ne_countries( scale = "medium", returnclass = "sf") ``` Make the plot with `geom_sf()` ```r library(sf) ggplot(data = world) + * geom_sf(fill = "grey90", color = "grey60") ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_world.png"> <center> ] --- ## Simple Features (sf) maps .leftcol[.code70[ Get the "US States" shape file ```r library(rnaturalearth) library(rnaturalearthdata) *us_states <- ne_states( * country = 'united states of america', returnclass = 'sf') ``` ]] --- ## Simple Features (sf) maps .leftcol[.code70[ Get the "US States" shape file ```r library(rnaturalearth) library(rnaturalearthdata) us_states <- ne_states( country = 'united states of america', returnclass = 'sf') ``` Make the plot with `geom_sf()` ```r library(sf) ggplot(data = us_states) + * geom_sf(fill = "grey90", color = "grey60") ``` ]] .rightcol[ <br> <center> <img src="images/plots/sf_us.png"> <center> ] --- ## Simple Features (sf) maps .leftcol60[.code70[ Get the **Continental** "US States" shape file ```r library(rnaturalearth) library(rnaturalearthdata) us_states_cont <- ne_states( country = 'united states of america', returnclass = 'sf') %>% * filter(! name %in% c('Alaska', 'Hawaii')) ``` Make the plot with `geom_sf()` ```r library(sf) ggplot(data = us_states_cont) + * geom_sf(fill = "grey90", color = "grey60") ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_us_cont.png"> <center> ] --- ## The `maps` package .leftcol60[.code70[ Includes data on: - World: world, world.cities, lakes - US: states, county, state, usa - France: france - Italy: italy - New zealand: nz Example: ```r library(maps) *us_counties <- st_as_sf( * map("county", plot = FALSE, fill = TRUE)) ggplot(data = us_counties) + * geom_sf(fill = 'grey90', color = 'grey60') ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_us_counties.png"> <center> ] --- ## Simple Features (sf) maps: `st_read()` .leftcol60[.code70[ Read in the "World" shape file from [Natural Earth](http://www.naturalearthdata.com/downloads/50m-cultural-vectors/) ```r library(sf) *world <- st_read(here::here( 'data', 'natural_earth_countries', 'ne_50m_admin_0_countries.shp')) %>% clean_names() ``` ``` #> Reading layer `ne_50m_admin_0_countries' from data source `/Users/jhelvy/gh/teaching/EDA/2022-Fall/class/11-maps/data/natural_earth_countries/ne_50m_admin_0_countries.shp' using driver `ESRI Shapefile' #> Simple feature collection with 241 features and 94 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -180 ymin: -89.99893 xmax: 180 ymax: 83.59961 #> Geodetic CRS: WGS 84 ``` ]] --- ## Simple Features (sf) maps: `st_read()` .leftcol60[.code70[ Read in the "World" shape file ```r library(sf) *world <- st_read(here::here( 'data', 'natural_earth_countries', 'ne_50m_admin_0_countries.shp')) %>% clean_names() ``` ``` #> Reading layer `ne_50m_admin_0_countries' from data source `/Users/jhelvy/gh/teaching/EDA/2022-Fall/class/11-maps/data/natural_earth_countries/ne_50m_admin_0_countries.shp' using driver `ESRI Shapefile' #> Simple feature collection with 241 features and 94 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -180 ymin: -89.99893 xmax: 180 ymax: 83.59961 #> Geodetic CRS: WGS 84 ``` ```r ggplot(data = world) + * geom_sf(fill = "grey90", color = "grey60") ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_world.png"> <center> ] --- ## Simple Features (sf) maps: `st_read()` .leftcol60[.code70[ Read in the "Central Park" shape file [[source]](https://github.com/malcolmbarrett/designing_ggplots) ```r library(sf) central_park <- st_read(here::here( 'data', 'central_park', 'CentralPark.shp')) ``` ``` #> Reading layer `CentralPark' from data source `/Users/jhelvy/gh/teaching/EDA/2022-Fall/class/11-maps/data/central_park/CentralPark.shp' using driver `ESRI Shapefile' #> Simple feature collection with 2550 features and 6 fields #> Geometry type: LINESTRING #> Dimension: XY #> Bounding box: xmin: -73.99249 ymin: 40.7625 xmax: -73.93922 ymax: 40.8051 #> Geodetic CRS: WGS 84 ``` ```r ggplot(data = central_park) + geom_sf(color = 'grey75') ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_central_park.png"> <center> ] --- class: inverse
10
:
00
## Your turn Use the **rnaturalearth** library to extract and plot the shape files for China and Africa: <br> .leftcol[ <center> <img src="images/plots/sf_china.png"> </center> ] .rightcol[ <center> <img src="images/plots/sf_africa.png"> </center> ] --- class: inverse, middle # Week 11: .fancy[Maps] ## 1. Plotting maps ## 2. .orange[Adding data to maps] ### BREAK ## 3. Projections <!-- Squirrels and dogs plots: https://designing-ggplots.netlify.com/#71 Hexmaps: - Use https://www.r-graph-gallery.com/hexbin-map.html - https://www.r-graph-gallery.com/328-hexbin-map-of-the-usa.html - Practice with wind data? --> --- class: inverse, center, middle # First rule of adding data to maps: # .red[Do you need to make a map?] --- class: center, middle background-color: #FFF <center> <img src="images/xkcd_heatmap.png" width=550> </center> .left[https://xkcd.com/1138/] --- class: inverse, center, middle # 1. .orange[Choropleth maps] # 2. Point maps --- background-color: #f7fcfd [Choropleth](https://en.wikipedia.org/wiki/Choropleth_map) - from Greek: - χῶρος "choros" (area/region) - πλῆθος "plethos" (multitude) <center> <img src="images/state_abbreviations.png" width=880> </center> .font70[From reddit: [r/dataisbeautiful by u/GaudyAudi](https://www.reddit.com/r/dataisbeautiful/comments/fgq3d3/oc_us_state_abbreviation_conventions/)] --- class: inverse, center, middle # Choropleth maps are easily misleading --- class: center, middle background-color: #fff ## Number of events != Number of events **per capita** <center> <img src="images/choropleth_ca.png" width=800> </center> --- class: center background-color: #fff ## Manipulating fill scale produces wildly different maps <center> <img src="images/choropleth_hispanic.png"> </center> --- class: center background-color: #fff ## Manipulating fill scale produces wildly different maps <br> .leftcol[ <center> <img src="images/nyt_covid_travel1.jpeg" width=500> </center> <br><br> .left[.font70[Source: [New York Times](https://www.nytimes.com/interactive/2020/04/02/us/coronavirus-social-distancing.html)]] ] .rightcol[ <center> <img src="images/nyt_covid_travel2.jpeg" width=500> </center> ] --- class: center background-color: #fff ### Land doesn't vote - people vote <center> <img src="images/swiss_vote.gif" width=600> </center> By [David Zumbach](https://twitter.com/DavidZumbach/status/1344547411985911808?s=19) --- class: center background-color: #fff # Land doesn't vote - people vote Election maps from: http://www-personal.umich.edu/~mejn/election/2016/ .cols3[ <center> <img src="images/election_2016_ec.png"> </center> ] .cols3[ <center> <img src="images/election_2016_county.png"> </center> ] .cols3[ <center> <img src="images/election_2016_proportion.png"> </center> ] --- class: middle <center> <img src="https://imgs.xkcd.com/comics/solar_system_cartogram_2x.png" width=700> </center> .left[.font70[https://xkcd.com/2439/]] --- class: center background-color: #fff ## Easy to lie with fake news <center> <img src="images/election_map_fakenews.png" width=450> </center> -- Bottom map is actually [this map](http://www-personal.umich.edu/~mejn/election/2012/countymaprb1024.png) of the 2012 election --- class: center, middle background-color: #fff ## (here is what actual crime rates look like) .leftcol[ 2016 Election map [[source]](http://www-personal.umich.edu/~mejn/election/2016/) <center> <img src="images/election_2016_county.png"> </center> ] .rightcol[ 2014 Crime map [[source]](https://www.washingtonpost.com/graphics/national/crime-rates-by-county/) <center> <img src="images/crime_map.jpeg"> </center> ] --- class: center background-color: #fff # A choropleth alternative: hex maps .leftcol[ 1994 Simpson Diversity Index in US Schools <center> <img src="images/Hexagons_SchoolDiversity_hex_1994.png"> </center> .font80[https://github.com/malcolmbarrett/designing_ggplots] ] .rightcol[ 2016 Electoral College <center> <img src="images/election_2016_chartograph.png" width=450> </center> https://fivethirtyeight.com/ ] --- class: center ## How to make a choropleth map <center> <img src="images/plots/sf_us_milk_2017.png" width=780> <center> --- ## How to make a choropleth map .leftcol60[.code70[ Get the "fill" data ```r milk_2017 <- milk_production %>% filter(year == 2017) %>% select(name = state, milk_produced) %>% mutate(milk_produced = milk_produced / 10^9) ``` Get the "map" data ```r us_states <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) %>% * left_join(milk_2017, by = 'name') ``` ]] -- .rightcol40[ ```r us_states %>% select(name, milk_produced) %>% head() ``` ``` #> Simple feature collection with 6 features and 2 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -124.7346 ymin: 41.69681 xmax: -82.4146 ymax: 49.36949 #> CRS: +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 #> name milk_produced geometry #> 1 Minnesota 9.864 MULTIPOLYGON (((-95.16057 4... #> 2 Washington 6.526 MULTIPOLYGON (((-122.6533 4... #> 3 Idaho 14.627 MULTIPOLYGON (((-117.0382 4... #> 4 Montana 0.288 MULTIPOLYGON (((-116.0482 4... #> 5 North Dakota 0.345 MULTIPOLYGON (((-104.0476 4... #> 6 Michigan 11.231 MULTIPOLYGON (((-84.4913 46... ``` ] --- ## How to make a choropleth map .leftcol60[.code70[ ```r ggplot(us_states) + * geom_sf(aes(fill = milk_produced)) + scale_fill_viridis( option = "plasma", limits = c(0, 40)) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + labs(fill = 'Milk produced\n(billions lbs)', title = 'Milk Production by State in 2017') ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_us_milk_2017.png"> <center> ] --- ## How to make a choropleth map .leftcol60[.code70[ ```r ggplot(us_states) + geom_sf(aes(fill = milk_produced)) + scale_fill_viridis( * trans = 'sqrt', option = "plasma", limits = c(0, 40)) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + labs(fill = 'Milk produced\n(billions lbs)', title = 'Milk Production by State in 2017') ``` ]] .rightcol40[ Non-linear scale: <center> <img src="images/plots/sf_us_milk_2017_quad.png"> <center> ] --- class: inverse, center, middle # 1. Choropleth maps # 2. .orange[Point maps] --- class: center # Points as locations <center> <img src="images/plots/uk_cities_plot.png" width=450> </center> --- class: center # Points encoding a variable <center> <img src="images/plots/uk_pop_area.png" width=450> </center> --- class: center # For point size, use **area**, not radius # `\(Area = \pi r^2\)` .leftcol[ ## Radius ] .rightcol[ ## Area ] <center> <img src="images/area.png" width=1000> </center> --- class: center .leftcol[ ## Radius <center> <img src="images/plots/uk_pop_radius.png" width=500> </center> ] .rightcol[ ## Area <center> <img src="images/plots/uk_pop_area.png" width=500> </center> ] --- class: center ## How to add points to a map <center> <img src="images/plots/sf_us_coffee.png" width=750> <center> --- ## How to add points to a map .leftcol[.code70[ Load the continental US shape file ```r us_states_cont <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) ``` Read in the coffee shop data ```r us_coffee_shops <- read_csv(here::here( 'data', 'us_coffee_shops.csv')) # Only keep data in continental US us_coffee_shops <- us_coffee_shops %>% filter(lat > 22, lat < 50, long > -150, long < -66) ``` ]] -- .rightcol[ ```r head(us_coffee_shops) ``` ``` #> # A tibble: 6 × 8 #> name lat long unique_id city state_abb zip state #> <chr> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr> #> 1 Baskin Robbins 40.8 -73.4 3304448 Huntington Station NY 11746 New York #> 2 Baskin Robbins 42.1 -88.0 11342048 Rolling Meadows IL 60008 Illinois #> 3 Baskin Robbins 34.0 -84.5 3304169 Marietta GA 30066 Georgia #> 4 Baskin Robbins 29.8 -95.6 3304006 Houston TX 77079 Texas #> 5 Baskin Robbins 36.4 -89.5 3303959 Tiptonville TN 38079 Tennessee #> 6 Baskin Robbins 40.7 -73.6 3304507 Merrick NY 11566 New York ``` ] --- ## How to add points to a map .leftcol60[.code70[ Plot coffee shop locations over map ```r ggplot() + geom_sf(data = us_states_cont) + * geom_point( * data = us_coffee_shops, * aes(x = long, y = lat, color = name), * size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(color = 'Coffee shop', title = 'Coffee Shops in the US') ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_us_coffee.png"> <center> ] --- class: inverse
15
:
00
## Your turn .font90[ Create this map of squirrels in NYC's Central Park using this data from the [Squirrel Census](https://www.thesquirrelcensus.com/): - The `CentralPark.shp` file in the `data/central_park` folder. - The `nyc_squirrels.csv` file in the `data` folder. Hint: The color is mapped to the `primary_fur_color` variable (More about the Squirrel Census [here](https://www.nytimes.com/interactive/2020/01/08/nyregion/central-park-squirrel-census.html)) ] <center> <img src="images/plots/sf_central_park_squirrels_facet.png" width=700> <center> --- class: inverse, center
05
:
00
### Intermission <center> <img src="images/state_borders.png" width=700> </center> --- class: inverse # Quiz 4
10
:
00
.leftcol[ ### Link is in the #class channel ] .rightcol[ <center> <img src="https://github.com/emse-p4a-gwu/2022-Spring/raw/main/images/quiz_doge.png" width="400"> </center> ] --- class: inverse, middle # Week 11: .fancy[Maps] ## 1. Plotting maps ## 2. Adding data to maps ### BREAK ## 3. .orange[Projections] <!-- Content from Andrew's slides: https://datavizf17.classes.andrewheiss.com/class/07-class/ Centroids with labels: https://www.r-spatial.org/r/2018/10/25/ggplot2-sf-2.html --> --- class: center ## What's a map projection? <center> <iframe width="700" height="394" src="https://www.youtube.com/embed/kIID5FDi2JQ?start=52" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </center> --- # What is the best projection?...it depends <br> # 1. [Compare projections](http://metrocosm.com/compare-map-projections.html) <br> # 2. [Compare country sizes](https://thetruesize.com/) --- ## Using projections To modify the projection of a map, use `coord_sf(crs = st_crs(XXXX))` ```r world <- ne_countries(scale = "medium", returnclass = "sf") ``` -- .cols3[.code60[ .center[Default (long-lat)] ```r ggplot(data = world) + geom_sf() ``` <center> <img src="images/plots/sf_world.png"> <center> ]] -- .cols3[.code60[ .center[Robinson projection] ```r ggplot(data = world) + geom_sf() + * coord_sf(crs = "ESRI:54030") ``` <center> <img src="images/plots/sf_world_robinson.png"> <center> ]] -- .cols3[.code60[ .center[Mollweide projection] ```r ggplot(data = world) + geom_sf() + * coord_sf(crs = "ESRI:54009") ``` <center> <img src="images/plots/sf_world_mollweide.png"> <center> ]] --- ## Common Projections ggplot layer: ```r coord_sf(crs = "ESRI:XXXX") ``` .leftcol[ **World** Code | Projection ------|--------------------------------------------------- **`"ESRI:54030"`** | **Robinson** `"ESRI:54002"` | Equidistant cylindrical `"ESRI:54004"` | Mercator `"ESRI:54008"` | Sinusoidal `"ESRI:54009"` | Mollweide ] .rightcol[ **United States** Code | Projection -------|--------------------------------------------------- **`"ESRI:102003"`** | **Albers** `"ESRI:102004"` | Lambert Conformal Conic `4269` | NAD 83 ] --- ## US projections ```r us_states_cont <- ne_states(country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) ``` .cols3[.code70[ NAD 83 projection ```r ggplot(data = world) + geom_sf() + * coord_sf(crs = 4269) ``` <center> <img src="images/plots/sf_us_cont_nad83.png"> <center> ]] .cols3[.code70[ Mercator ```r ggplot(data = world) + geom_sf() + * coord_sf(crs = "ESRI:54004") ``` <center> <img src="images/plots/sf_us_cont_merc.png"> <center> ]] .cols3[.code70[ Albers ```r ggplot(data = us_states_cont) + geom_sf() + * coord_sf(crs = "ESRI:102003") ``` <center> <img src="images/plots/sf_us_cont_albers.png"> <center> ]] --- ## Mapping data to projections - choropleth map .leftcol60[.code70[ ```r milk_2017 <- milk_production %>% filter(year == 2017) %>% select(name = state, milk_produced) %>% mutate(milk_produced = milk_produced / 10^9) us_states <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) %>% * left_join(milk_2017, by = 'name') ggplot(us_states) + * geom_sf(aes(fill = milk_produced)) + scale_fill_viridis( option = "plasma", limits = c(0, 40)) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + labs(fill = 'Milk produced\n(billions lbs)', title = 'Milk Production by State in 2017') ``` ]] .rightcol40[ <br> <center> <img src="images/plots/sf_us_milk_2017.png"> <center> ] --- ## Mapping data to projections - choropleth map .leftcol60[.code70[ ```r milk_2017 <- milk_production %>% filter(year == 2017) %>% select(name = state, milk_produced) %>% mutate(milk_produced = milk_produced / 10^9) us_states <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) %>% left_join(milk_2017, by = 'name') ggplot(us_states) + geom_sf(aes(fill = milk_produced)) + scale_fill_viridis( option = "plasma", limits = c(0, 40)) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + labs(fill = 'Milk produced\n(billions lbs)', title = 'Milk Production by State in 2017') + * coord_sf(crs = "ESRI:102003") ``` ]] .rightcol40[ <center> Albers Projection <img src="images/plots/sf_us_milk_2017_albers.png"> <center> ] --- **Mapping data to projections - points** .leftcol60[.code60[ ```r us_states_cont <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) us_coffee_shops <- us_coffee_shops %>% filter(lat > 22, lat < 50, long > -150, long < -66) ggplot() + geom_sf(data = us_states_cont) + * geom_point( * data = us_coffee_shops, * aes(x = long, y = lat, color = name), * size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(color = 'Coffee shop', title = 'Coffee Shops in the US') ``` ]] .rightcol40[ <center> <img src="images/plots/sf_us_coffee.png"> <center> ] --- **Mapping data to projections - points** .leftcol60[.code60[ ```r us_states_cont <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) us_coffee_shops <- us_coffee_shops %>% filter(lat > 22, lat < 50, long > -150, long < -66) ggplot() + geom_sf(data = us_states_cont) + geom_point( data = us_coffee_shops, aes(x = long, y = lat, color = name), size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(color = 'Coffee shop', title = 'Coffee Shops in the US') + * coord_sf(crs = "ESRI:102003") ``` ]] .rightcol40[ ### .center[.red[Fail!]] <center> <img src="images/plots/sf_us_coffee_albers_bad.png"> <center> ] --- ## Mapping data to projections - points First match `us_coffee_shops` crs to `us_states_cont` .leftcol60[.code70[ ```r us_states_cont <- ne_states( country = 'united states of america', returnclass = 'sf') %>% filter(! name %in% c('Alaska', 'Hawaii')) us_coffee_shops <- us_coffee_shops %>% filter(lat > 22, lat < 50, long > -150, long < -66) *us_coffee_shops_sf <- st_as_sf(us_coffee_shops, * coords = c("long", "lat"), * crs = st_crs(us_states_cont)) ``` ]] .rightcol40[ ```r head(us_coffee_shops_sf) ``` ``` #> Simple feature collection with 6 features and 6 fields #> Geometry type: POINT #> Dimension: XY #> Bounding box: xmin: -95.60337 ymin: 29.77006 xmax: -73.41174 ymax: 42.05709 #> CRS: +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 #> # A tibble: 6 × 7 #> name unique_id city state_abb zip state geometry #> <chr> <dbl> <chr> <chr> <chr> <chr> <POINT [°]> #> 1 Baskin Robbins 3304448 Huntington Station NY 11746 New York (-73.41174 40.81772) #> 2 Baskin Robbins 11342048 Rolling Meadows IL 60008 Illinois (-88.0044 42.05709) #> 3 Baskin Robbins 3304169 Marietta GA 30066 Georgia (-84.52889 34.02124) #> 4 Baskin Robbins 3304006 Houston TX 77079 Texas (-95.60337 29.77006) #> 5 Baskin Robbins 3303959 Tiptonville TN 38079 Tennessee (-89.46582 36.37781) #> 6 Baskin Robbins 3304507 Merrick NY 11566 New York (-73.55707 40.67515) ``` ] --- ## Mapping data to projections - points Plot coffee shop locations over map with `geom_sf()` .leftcol60[.code70[ ```r ggplot() + geom_sf(data = us_states_cont) + * geom_sf( * data = us_coffee_shops_sf, * aes(color = name), * size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(fill = 'Coffee shop', title = 'Coffee Shops in the US') ``` ]] .rightcol40[ <center> <img src="images/plots/sf_us_coffee_base.png"> <center> ] --- ## Mapping data to projections - points Plot coffee shop locations over map with `geom_sf()` .leftcol60[.code70[ ```r ggplot() + geom_sf(data = us_states_cont) + geom_sf( data = us_coffee_shops_sf, aes(color = name), size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(fill = 'Coffee shop', title = 'Coffee Shops in the US') + * coord_sf(crs = "ESRI:102003") ``` ]] .rightcol40[ <center> Albers Projection <img src="images/plots/sf_us_coffee_albers.png"> <center> ] --- ## Mapping data to projections - points Plot coffee shop locations over map with `geom_sf()` .leftcol60[.code70[ ```r ggplot() + geom_sf(data = us_states_cont) + geom_sf( data = us_coffee_shops_sf, aes(color = name), size = 0.3) + theme_void(base_size = 15) + theme(legend.position = 'bottom') + guides(color = guide_legend( # Move legend title to top title.position = "top", # Increase legend point size override.aes = list(size = 3))) + labs(fill = 'Coffee shop', title = 'Coffee Shops in the US') + * coord_sf(crs = "ESRI:102004") ``` ]] .rightcol40[ <center> LCC Projection <img src="images/plots/sf_us_coffee_lcc.png"> <center> ] --- class: inverse
20
:
00
.leftcol60[.font80[ ## .center[Your turn] Use the `internet_users_country.csv` data and the `world` data frame from the **rnaturalearth** library to create these two versions of internet access by country in 2015. Hints: - The `iso_a3` variable in the `worlds` data frame corresponds with the `code` variable in the `internet_users_country.csv` data frame (use this for joining). - Use `scale_fill_gradient()` to fill the color: ```r scale_fill_gradient( low = "#e7e1ef", high = "#dd1c77", na.value = "grey70", limits = c(0, 100)) ``` ]] .rightcol40[ <center> Robinson Projection <img src="images/plots/sf_world_internet_robinson.png"> Mercator Projection <img src="images/plots/sf_world_internet_mercator.png"> <center> ] --- class: inverse, middle, center # Extra practice --- class: inverse ## Your turn
15
:
00
Use the `us_states_cont` data frame and the `state_abbs` data frame to create a labeled map of the U.S.: <img src="images/plots/sf_us_labeled.png" width=600>