

Week 7: Amounts \& Proportions

ini EMSE 4572: Exploratory Data Analysis
© John Paul Helveston
¿ October 12, 2022

Tip of the week

The fcuk package

The fcuk package

Error message without the fcuk package:

```
maen(c(1, 2, 3, 4, 5))
```

Error in maen $(c(1,2,3,4,5))$: could not find function "maen"

The fcuk package

Error message without the fcuk package:

```
maen(c(1, 2, 3, 4, 5))
```

```
Error in maen(c(1, 2, 3, 4, 5)) : could not find function "maen"
```

Error message with the fcuk package:
library (fcuk)
maen(c(1, 2, 3, 4, 5))
Error in maen(c(1, 2, 3, 4, 5)) : could not find function "maen" Did you mean : mean or rename ?

The fcuk package

Install:

```
install.packages("fcuk")
```


Automatically load:

fcuk::add_fcuk_to_rprofile()

FC \# K (O) fcuk

Tidy data review

Tidy data

Tidy data follows the following three rules:

- Each variable has its own column
- Each observation has its own row
- Each value has its own cell

variables

observations

values

Next projects due:

- Mini project 2: Exploring Data (Due 10/18)
- Project progress report (Due 11/01)

Today's data

```
avengers <- read_csv(here('data', 'avengers.csv'))
bears
federal_spending <- read_csv(here('data', 'fed_spend_long.csv'))
gapminder
lotr_words
<- read_csv(here('data', 'gapminder.csv'))
    <- read_csv(here('data', 'lotr_words.csv'))
milk_production <- read_csv(here('data', 'milk_production.csv'))
wildlife_impacts <- read_csv(here('data', 'wildlife_impacts.csv'))
```


New packages

The \{waffle\} package

```
install.packages("waffle", repos = "https://cinc.rud.is")
```


Week 7: Amounts \& Proportions

1. Manipulating factors
2. Graphing amounts BREAK
3. Graphing proportions

Week 7: Amounts \& Proportions

1. Manipulating factors

2. Graphing amounts BREAK
3. Graphing proportions

Sorting in ggplot is done by reordering factors

Two ways to sort

Method 1: Use reorder() inside aesthetic mapping

```
# Format the data frame
federal_spending %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(
            x = rd_budget_bil,
            y = reorder(department, rd_budget_bil)
        ),
        width = 0.7, alpha = 0.8,
        fill = "steelblue"
    ) +
    scale_x_continuous(
        expān\overline{d}= expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


Two ways to sort

Method 2: Use fct_reorder() when formatting the data frame

```
# Format the data frame
federal_spending %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
    mutate(
        department = fct_reorder(
            department, \overline{rd_budget_bil)) %>%}
# Make the chart
    ggplot() +
    geom_col(
        aes(x = rd_budget_bil, y = department),
        width = 0.\overline{7}, alpha}=0.8
        fill = "steelblue"
    ) +
    scale_x_continuous(
        expān\overline{d}= expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


Reorder \& modify factors with the forcats library

Loaded with library(tidyverse)

Common situations for modifying / reording factors:

1. Reorder factors based on another numerical variable
2. Reorder factors manually
3. Modify factors manually
4. What if there are too many factor levels?

1. Reorder factors based on another numerical variable

Use fct_reorder()

```
# Format the data frame
federal_spending %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
    mutate(
        department = fct_reorder(
            department, \overline{rd_budget_bil)) %>%}
# Make the chart
    ggplot() +
    geom_col(
        aes(x = rd_budget_bil, y = department),
        width = 0.\overline{7}, alpha}=0.8
        fill = "steelblue"
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


2. Reorder factors manually

```
# Format the data frame
lotr_words %>%
    pivot_longer(
        names_to = 'gender',
        values_to = 'wordCount',
        cols =-Female:Male) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = wordCount, y = Film),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


2. Reorder factors manually with fct_relevel()

```
# Format the data frame
lotr_words %>%
    pivot_longer(
        names_to = 'gender',
        values_to = 'wordCount',
        cols = Female:Male) %>%
    mutate(
        Film = fct_relevel(Film, levels = c(
            'The Fel\
            'The Two Towers',
            'The Return Of The King'))) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = wordCount, y = Film),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


3. Modify factors manually

The film names here are too long

```
# Format the data frame
lotr_words %>%
    pivot_longer(
        nämes_to = 'gender',
        values_to = 'wordCount',
        cols = Female:Male) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = wordCount, y = Film),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


3. Modify factors manually with fct_recode()

```
"new label" = "old label"
```

```
# Format the data frame
lotr_words %>%
    pivot_longer(
            names_to = 'gender',
            values_to = 'wordCount',
            cols = Female:Male) %>%
    mutate(
        Film = fct_recode(Film,
            'The Fellowship\nof the Ring' = 'The Fellowship Of
            'The Return\nof the King' = 'The Return Of The Kin
# Make the chart
    ggplot() +
    geom_col(
        aes(x = wordCount, y = Film),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


2 \& 3. Modify and reorder factors manually

```
# Format the data frame
lotr_words %>%
    pivot_longer(
        names_to = 'gender',
        values_to = 'wordCount',
        cols = Female:Male) %>%
    mutate(
        Film = fct_relevel(Film, levels = c(
            'The Fellowship Of The Ring',
            'The Two Towers',
            'The Return Of The King')),
        Film = fct_recode(Film,
            'The Fellowship\nof the Ring' = 'The Fellowship Of
            'The Return\nof the King' = 'The Return Of The Kin
# Make the chart
    ggplot() +
    geom_col(
            aes(x = wordCount, y = Film),
            width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


4. What if there are too many factor levels?

```
# Format the data frame
federal_spending %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
    mutate(
        department = fct_reorder(
        department, \overline{rd_budget_bil)) %>%}
# Make the chart
    ggplot() +
    geom_col(
        aes(x = rd_budget_bil, y = department),
        width = 0.7, alphà = 0.8,
        fill = "steelblue"
    ) +
    scale_x_continuous(
        expān\overline{d}= expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


4. What if there are too many factor levels?

Strategy: Merge smaller factors into "Other" with fct_other()

```
# Format the data frame
federal_spending %>%
    mutate(
        department = fct_other(department,
            keep = c('DOD', 'HHS', 'NIH', 'NASA', 'DOE'))) %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
    mutate(
        department = fct_reorder(department, rd_budget_bil))
# Make the chart
    ggplot() +
    geom_col(
        ae\overline{s}(x = rd_budget_bil, y = department),
        width = 0.\overline{7, alpha = 0.8,}
        fill = "steelblue"
    ) +
    scale_x_continuous(
        exp\overline{and}= expansion(mult =c(0, 0.05))) +
    theme_minimal_vgrid()
```


4. What if there are really too many factor levels?

```
# Format the data frame
avengers %>%
    mutate(
        name_alias = fct_reorder(name_alias, appea
# Make the chart
    ggplot() +
    geom_col(
        aes(x = appearances,y = name_alias),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


4. What if there are really too many factor levels?

Strategy: Keep top N, drop the rest with slice()

```
# Format the data frame
avengers %>%
    mutate(
        name_alias = fct_reorder(name_alias, appea
    arrange(desc(appearances)) %>%
    slice(1:10) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = appearances, y = name_alias),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


4. What if there are really too many factor levels?

slice() works with grouping too!

```
# Format the data frame
avengers %>%
    mutate(
        name_alias = fct_reorder(name_alias, appea
    arrange(desc(appea
    group_by(gender) %>%
    slice(1:10) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(
            x = appearances,
            y = name_alias,
            fill = gender
        ),
        width = 0.7, alpha = 0.8
    ) +
    scale_x_continuous(
        expānd = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


Your turn - practice manipulating factors

Use the wildlife_impacts data to create the following plot

Week 7: Amounts \& Proportions

1. Manipulating factors
2. Graphing amounts BREAK
3. Graphing proportions

Show amounts with:

Bar chart

Lollipop chart

Bars are good for highlighting specific categories

Use lollipops when:

- The bars are overwhelming
- You're not highlighting categories

Or use dots and don't set axis to 0

How to make a Bar chart

```
# Summarize the data
federal_spending %>%
    group_by(department) %>%
    summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %
    mutate(department = fct_reorder(department, rd_budget_
# Make chart
    ggplot() +
    geom_col(
        aes(x = rd_budget_bil, y = department),
        width = 0.7, alpha = 0.8,
        fill = 'steelblue') +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid()
```


Filling the bars with color

```
```


Summarize the data

```
```


Summarize the data

federal_spending %>%
federal_spending %>%
group_by(department) %>%
group_by(department) %>%
summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %
summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %
mutate(
mutate(
department = fct_reorder(department, rd_budget_bil),
department = fct_reorder(department, rd_budget_bil),
is_dod = if_else(
is_dod = if_else(
departmen\overline{t}== 'DOD', TRUE, FALSE)) %>%
departmen\overline{t}== 'DOD', TRUE, FALSE)) %>%

Make the chart

Make the chart

 ggplot() +
 ggplot() +
 geom_col(
 geom_col(
 aes(x = rd_budget_bil, y = department,
 aes(x = rd_budget_bil, y = department,
 fill = is_dod),
 fill = is_dod),
 width = 0.7, àlpha = 0.8) +
 width = 0.7, àlpha = 0.8) +
 scale_x_continuous(
 scale_x_continuous(
 expand = expansion(mult = c(0, 0.05))) +
 expand = expansion(mult = c(0, 0.05))) +
 theme_minimal_vgrid() +
 theme_minimal_vgrid() +
 theme(legend.position = 'none')
    ```
```

 theme(legend.position = 'none')
    ```
```

The DOD's R\&D budget is nearly the same as all other departments combined

Filling the bars with color

```
# Summarize the data
federal_spending %>%
    group_by(department) %>%
    summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %
    mutate(
        department = fct_reorder(department, rd_budget_bil),
        is_dod = if_else(
            department == 'DOD', TRUE, FALSE)) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = rd_budget_bil, y = department,
            fill = is_dod),
        width = 0.7, \overline{alpha = 0.8) +}
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    scale_fill_manual(values = c('grey', 'steelblue')) +
    theme_minimal_vgrid() +
    theme(legend.position = 'none')
```

The DOD's R\&D budget is nearly the same as all other departments combined

How to make a Dot chart

Summarize data frame:

```
# Summarize the data
federal_spending %>%
    group_by(department) %>%
    summarise(
        rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
    mutāe(
        department = fct_reorder(department, rd_budget_bil))
# Make the chart
    ggplot() +
    geom_point(
        aes(x = rd_budget_bil, y = department),
        size = 2.5, color = 'steelblue') +
    theme_minimal_vgrid()
```

Dot chart of federal R\&D
spending by department

How to make a Lollipop chart

Summarize data frame:

```
```


Summarize the data

```
```


Summarize the data

federal_spending %>%
federal_spending %>%
group_by(department) %>%
group_by(department) %>%
summarise(
summarise(
rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
rd_budget_bil = sum(rd_budget_mil) / 10^3) %>%
mutate(
mutate(
department = fct_reorder(department, rd_budget_bil))
department = fct_reorder(department, rd_budget_bil))

Make the chart

Make the chart

 ggplot()
 ggplot()
 geom_segment(
 geom_segment(
 aes(x = 0, xend = rd_budget_bil,
 aes(x = 0, xend = rd_budget_bil,
 y = department, yend = department),
 y = department, yend = department),
 color = 'grey') +
 color = 'grey') +
 geom_point(
 geom_point(
 aes(x = rd_budget_bil, y = department),
 aes(x = rd_budget_bil, y = department),
 size = 2.5, color = 'steelblue') +
 size = 2.5, color = 'steelblue') +
 theme_minimal_vgrid()
    ```
```

 theme_minimal_vgrid()
    ```
```

Lollipop chart of federal R\&D
spending by department

Your turn - practice plotting amounts

Create the following charts:

Data: bears
Number of bear killings in each month
August is the deadliest month

Data: milk_production

Break!

Stand up, Move around, Stretch!

05

 0
 0

Week 7: Amounts \& Proportions

1. Manipulating factors
2. Graphing amounts BREAK
3. Graphing proportions

Show proportions with:

Bar charts

2017 Milk Production by State

Pie charts
Waffle charts

Stacked bars

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = ""', y = milk_produced, fill = state),
        width = 0.7, alpha = 0.8) +
    scale_y_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_hgrid() +
    labs(x = NULL,
        y = 'Milk produced (lbs)',
        fill = 'State',
        title = '2017 Milk Production\nby State')
```


Stacked bars - Rotated also looks good

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
# Make the chart
    ggplot() +
    geom col(
        aes(x = milk_produced, y = "'", fill = state),
        width = 0.7, alpha = 0.8) +
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_hgrid() +
    labs(y = NULL,
        x = 'Milk produced (lbs)',
        fill = 'State',
        title = '2017 Milk Production by State')
```

2017 Milk Production by State

Stacked bars - not great for more than a few categories

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin',
            'New York', 'Idaho'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced))
# Make the chart
    ggplot() +
    geom_col(
        aes(x = ""', y = milk_produced, fill = state),
        width = 0.7, alpha = 0.8) +
    scale_y_continuous(
        expand = expansion(mult = c(0, 0.05))) +
    theme_minimal_vgrid() +
    labs(\overline{x = NULL,}
        y = 'Milk produced (lbs)',
        fill = 'State',
        title = '2017 Milk Production\nby State')
```


Dodged bars

Better for part-to-whole comparison

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
    mutate(state = fct_reorder(state, milk_produced)) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = milk_produced, y = state),
        width = 0.7, alpha = 0.8) +
    scale_x_continuous(
        expand = expansion(mult =c(0, 0.05))) +
    theme_minimal_vgrid() +
    labs(x = 'Milk produced (lbs)',
        y = 'State',
            title = '2017 Milk Production by State')
```


Okay:

2017 Milk Production by State

Better:

Dodged bars

```
```

milk_production %>%

```
```

milk_production %>%
fi\imathler(year %in% c(1970, 2017)) %>%
fi\imathler(year %in% c(1970, 2017)) %>%
mutate(state = fct_other(state,
mutate(state = fct_other(state,
keep = c('California', 'Wisconsin'))) %>%
keep = c('California', 'Wisconsin'))) %>%
group_by(year, state) %>%
group_by(year, state) %>%
summarise(milk_produced = sum(milk_produced)) %>%
summarise(milk_produced = sum(milk_produced)) %>%

Make the chart

Make the chart

 ggplot() +
 ggplot() +
 geom_col(
 geom_col(
 aes(x = milk_produced,
 aes(x = milk_produced,
 y = as.factor(year),
 y = as.factor(year),
 fill = state),
 fill = state),
 position = 'dodge',
 position = 'dodge',
 width = 0.7, alpha = 0.8) +
 width = 0.7, alpha = 0.8) +
 scale_x_continuous(
 scale_x_continuous(
 expand = expansion(mult = c(0, 0.05))) +
 expand = expansion(mult = c(0, 0.05))) +
 theme_minimal_vgrid() +
 theme_minimal_vgrid() +
 labs(x = 'Milk produced (lbs)',
 labs(x = 'Milk produced (lbs)',
 y = 'Year',
 y = 'Year',
 fill = 'State',
 fill = 'State',
 title = '1970 & 2017 Milk Production by Stat&
    ```
```

 title = '1970 & 2017 Milk Production by Stat&
    ```
```


Better for comparing total:

1970 \& 2017 Milk Production by State

Better for comparing parts:

Where stacking is useful

The Bechdel Test Over Time
How women are represented in movies

- 2 to 3 groups
- Proportions over time

Where stacking is useful

FIGURE 6.3100% stacked bars
https://www.perceptualedge.com/blog/?p=2239

The Notorious P-I-E

Start with a bar chart

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = "'", y = milk_produced, fill = state),
        width = 0.7, alpha = 0.8) +
    theme_minimal_hgrid() +
    labs(x = NULL,
        y = 'Milk produced (lbs)',
        fill = 'State',
        title = '2017 Milk Production\nby State')
```

2017 Milk Production
by State

The Notorious P-I-E

Convert bar to pie with coord_polar()

```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = ""', y = milk_produced, fill = state),
        width = 0.7, alpha = 0.8) +
    coord_polar(theta = "y") +
    theme_minimal_hgrid() +
    labs(x = NULL,
        y = 'Milk produced (lbs)',
        fill = 'State',
        title = '2017 Milk Production by State')
```


2017 Milk Production by State


```
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
    arrange(desc(state)) %>%
    mutate(p = 100*(milk_produced / sum(milk_produced
        label = str_c(round(p), '%')) %>%
# Make the chart
    ggplot() +
    geom_col(
        aes(x = """, y = milk_produced, fill = state),
        width = 0.7, alpha = 0.8) +
    geom_text(
        aes(x = ""', y = milk_produced, label = label),
        color = "white", size = 6,
        position = position_stack(vjust = 0.5)) +
    coord_polar(theta = "y") +
    theme_map() +
    labs(x = NULL,
        y = NULL,
        fill = 'State',
        title = '2017 Milk Production by State')
```


The Notorious P-I-E

Final chart with labels \&

theme_map()

2017 Milk Production by State

Pies are still useful if the sum of components matters

The best pies are square pies

https://eagereyes.org/blog/2016/a-reanalysis-of-a-study-about-square-pie-charts-from-2009

Waffle plots

Use values between 100-1,000

(You don't want 1,000,000,000 boxes!)

```
library(waffle)
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
    mutate(milk_produced = milk_produced / 10^9) %>%
```

\# Make the chart
ggplot() +
geom_waffle(
aes (fill = state, values = milk_produced),
color $=$ "white", size $=1$, n_rows $=15)+$
scale_x_discrete $($ expand $=c(0,0))+$
color $=$ "white", size $=1$, n_rows
scale_x_discrete(expand $=c(0,0))$
scale_y_discrete(expand $=c(0,0))+$
theme_minimal() +
labs(fill = 'State',
$x=$ NULL, $y=N U L L$,
title $=$ ' 2017 Milk Production by State',
subtitle = '(1 square = 1 billion lbs)' $)$
\#> \# A tibble: 3×2
\#> state milk_produced
\#> <fct> <dbl>
\#> 1 California 39.8
\#> 2 Wisconsin 30.3
\#> 3 Other 145.

2017 Milk Production by State
(1 square $=1$ billion lbs)

Waffle plots

Use values between 100-1,000

(You don't want 1,000,000,000 boxes!)

```
library(waffle)
# Format the data
milk_production %>%
    filter(year == 2017) %>%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) %>%
    group_by(state) %>%
    summarise(milk_produced = sum(milk_produced)) %>%
    mutate(milk_produced = milk_produced / 10^9) %>%
```

\# Make the chart
ggplot() +
geom_waffle(
aes (fill = state, values = milk_produced),
color = "white", size = 1, n_rows = 15,
flip = TRUE) +
scale_x_discrete(expand = c(0, 0)) +
scale_y_discrete(expand $=c(0,0))+$
theme_minimal() +
labs(fill = 'State',
$x=$ NULL, $y=N U L L$,
title $=' 2017$ Milk Production by State'
subtitle $=1(1$ square $=1$ billion lbs)')
title $=' 2017$ Milk Production by State'
subtitle $='(1$ square $=1$ billion lbs)')
\#> \# A tibble: 3×2
\#> state milk_produced
\#> <fct> <dbl>
\#> 1 California 39.8
\#> 2 Wisconsin 30.3
\#> 3 Other 145.

2017 Milk Production by State
(1 square $=1$ billion lbs)


```
library(waffle)
\# Format the data
milk production \%>\%
    filter(year \%in\% c(1970, 2017)) \%>\%
    mutate(state = fct_other(state,
        keep = c('California', 'Wisconsin'))) \%>\%
    group_by(year, state) \%>\%
    summarise(milk_produced = sum(milk_produced)) \%>\%
    mutate(milk_produced = milk_produced / 10^9) \%>\%
\# Make the chart
    ggplot() +
    geom_waffle(
        aes(fill = state, values = milk_produced),
        color = "white", size = 1, n_rows = 10,
        flip = TRUE) +
facet_wrap(vars(year), strip.position = 'bottom')
    scale_x_discrete(expand = c(0, 0)) +
    scale_y_discrete (expand \(=c(0,0))+\)
    theme_minimal() +
    labs(fill = 'State',
        \(x=\) NULL, \(y=N U L L\),
        title = '1970 \& 2017 Milk Production by Stat
        subtitle = '(1 square = 1 billion lbs)')
library (waffle)
\# Format the data
milk_production \%>\%
filter(year \%in\% c(1970, 2017)) \%>\%
mutate(state = fct_other(state,
keep \(=c(' C a l i f o r n i a ', ~ ' W i s c o n s i n '))) ~ \%>\%\)
group_by(year, state) \%>\%
summarise(milk_produced = sum(milk_produced)) \%>\% mutate(milk_produced \(=\) milk_produced / 10^9) \%>\%
\# Make the chart
ggplot() +
geom_waffle(
aes(fill = state, values = milk_produced), color = "white", size = 1, n_rows = 10, flip = TRUE) +
facet_wrap(vars(year), strip.position = 'bottom')
scale_x_discrete(expand = c(0, 0)) +
theme_minimal() +
labs(fill = 'State', \(x=N U L L, y=N U L L\), title = '1970 \& 2017 Milk Production by Stat subtitle = '(1 square = 1 billion lbs)')
```


Waffle comparison

```
#> # A tibble: 3 < 2
#> state milk_produced
#> <fct> <dbl>
#> 1 California 39.8
#> 2 Wisconsin 30.3
#> 3 Other 145.
```


Stacked bars

Pie chart

Dodged bars

1970 \& 2017 Milk Production by State

Waffle chart

1970 \& 2017 Milk Production by State
(1 square $=1$ billion lbs)

Your turn

Using the wildlife_impacts data, create plots that shows the proportion of incidents that occur at each different time of day.

For this exercise, you can remove NA values.

Try to create the following plots:

- Stacked bars
- Dodged bars
- Pie chart
- Waffle chart

To get started, you'll need to first summarize the data:

```
wildlife_summary <- wildlife_impacts %>%
    filter(!is.na(time_of_day)) %>%
    count(time_of_day)
wildlife_summary
```

```
#> # A tibble: 4 x 2
#> time_of_day n
#> <chr> <int>
#> 1 Dawn 1270
#> 2 Day 25123
#> 3 Dusk 1717
#> 4 Night 12735
```

