
Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
 EMSE 4572/6572: Exploratory Data Analysis EMSE 4572/6572: Exploratory Data Analysis

 John Paul Helveston John Paul Helveston

 September 13, 2023 September 13, 2023

1 / 801 / 80

�p of th� wee��p of th� wee�

Copy-paste magic with Copy-paste magic with datapastadatapasta

Useful for "small data"Useful for "small data": e.g., : e.g., U.S. State AbbreviationsU.S. State Abbreviations

2 / 802 / 80

https://milesmcbain.github.io/datapasta/
https://www.50states.com/abbreviations.htm

Today's data
"Clean" data

wildlife_impacts <- read_csv(here::here('data', 'wildlife_impacts.csv'))
milk_production <- read_csv(here::here('data', 'milk_production.csv'))
msleep <- read_csv(here::here('data', 'msleep.csv'))

"Messy" data

wind <- read_excel(here::here('data', 'US_State_Wind_Energy_Facts_2018.xlsx'))
hot_dogs <- read_excel(here::here('data', 'hot_dog_winners.xlsx'))

3 / 80

Plus two new packages:
For manipulating dates
install.packages('lubridate')

For cleaning column names
install.packages('janitor')

4 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. Dates5. Dates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
5 / 805 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. 1. Merging datasets with joinsMerging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. Dates5. Dates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
6 / 806 / 80

What's wrong with this map?

7 / 80

head(names)

#> state_name
#> 1 Alabama
#> 2 Alaska
#> 3 Arizona
#> 4 Arkansas
#> 5 California
#> 6 Colorado

head(abbs)

#> state_abb
#> 1 AK
#> 2 AL
#> 3 AR
#> 4 AZ
#> 5 CA
#> 6 CO

result <- bind_cols(names, abbs)
head(result)

#> state_name state_abb
#> 1 Alabama AK
#> 2 Alaska AL
#> 3 Arizona AR
#> 4 Arkansas AZ
#> 5 California CA
#> 6 Colorado CO

Likely culprit: Merging two columns

8 / 80

band_members

#> # A tibble: 3 × 2
#> name band
#> <chr> <chr>
#> 1 Mick Stones
#> 2 John Beatles
#> 3 Paul Beatles

band_instruments

#> # A tibble: 3 × 2
#> name plays
#> <chr> <chr>
#> 1 John guitar
#> 2 Paul bass
#> 3 Keith guitar

Joins
�� inner_join()
�� left_join() / right_join()
�� full_join()

9 / 80

inner_join()
band_members %>%
 inner_join(band_instruments)

#> # A tibble: 2 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 John Beatles guitar
#> 2 Paul Beatles bass

10 / 80

full_join()
band_members %>%
 full_join(band_instruments)

#> # A tibble: 4 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass
#> 4 Keith <NA> guitar

11 / 80

left_join()
band_members %>%
 left_join(band_instruments)

#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass

12 / 80

right_join()
band_members %>%
 right_join(band_instruments)

#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 John Beatles guitar
#> 2 Paul Beatles bass
#> 3 Keith <NA> guitar

13 / 80

band_members %>%
 left_join(band_instruments)

#> Joining, by = "name"

#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass

band_members %>%
 left_join(
 band_instruments,
 by = 'name'
)

#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass

Specify the joining variable name

14 / 80

band_members

#> # A tibble: 3 × 2
#> name band
#> <chr> <chr>
#> 1 Mick Stones
#> 2 John Beatles
#> 3 Paul Beatles

band_instruments2

#> # A tibble: 3 × 2
#> artist plays
#> <chr> <chr>
#> 1 John guitar
#> 2 Paul bass
#> 3 Keith guitar

band_members %>%
 left_join(
 band_instruments2,
 by = c("name" = "artist")
)

#> # A tibble: 3 × 3
#> name band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass

Specify the joining variable name
If the names differ, use by = c("left_name" = "joining_name")

15 / 80

band_members

#> # A tibble: 3 × 2
#> name band
#> <chr> <chr>
#> 1 Mick Stones
#> 2 John Beatles
#> 3 Paul Beatles

band_instruments2

#> # A tibble: 3 × 2
#> artist plays
#> <chr> <chr>
#> 1 John guitar
#> 2 Paul bass
#> 3 Keith guitar

band_members %>%
 rename(artist = name) %>%
 left_join(
 band_instruments2,
 by = "artist"
)

#> # A tibble: 3 × 3
#> artist band plays
#> <chr> <chr> <chr>
#> 1 Mick Stones <NA>
#> 2 John Beatles guitar
#> 3 Paul Beatles bass

Specify the joining variable name
Or just rename the joining variable in a pipe

16 / 80

1� Create a data frame called 1� Create a data frame called state_datastate_data by joining by joining

the data frames the data frames states_abbsstates_abbs and and

milk_productionmilk_production and then selecting the variables and then selecting the variables

regionregion, , state_namestate_name, , state_abbstate_abb. . HintHint� Use the� Use the

distinct()distinct() function to drop repeated rows. function to drop repeated rows.

Your result should look like this:Your result should look like this:

head(state_data)head(state_data)

#> # A tibble: 6 × 3#> # A tibble: 6 × 3
#> region state_name state_abb#> region state_name state_abb
#> <chr> <chr> <chr> #> <chr> <chr> <chr>
#> 1 Northeast Maine ME #> 1 Northeast Maine ME
#> 2 Northeast New Hampshire NH #> 2 Northeast New Hampshire NH
#> 3 Northeast Vermont VT #> 3 Northeast Vermont VT
#> 4 Northeast Massachusetts MA #> 4 Northeast Massachusetts MA
#> 5 Northeast Rhode Island RI #> 5 Northeast Rhode Island RI
#> 6 Northeast Connecticut CT#> 6 Northeast Connecticut CT

2� Join the 2� Join the state_datastate_data data frame to the data frame to the

wildlife_impactswildlife_impacts data frame, adding the data frame, adding the

variables variables regionregion and and state_namestate_name

glimpse(wildlife_impacts)glimpse(wildlife_impacts)

#> Rows: 56,978#> Rows: 56,978
#> Columns: 24#> Columns: 24
#> $ region <chr> "Northeast", "Northeast", "Northeast", "Northeast"#> $ region <chr> "Northeast", "Northeast", "Northeast", "Northeast"
#> $ state_name <chr> "Maine", "Maine", "Maine", "Maine", "Maine", "Main#> $ state_name <chr> "Maine", "Maine", "Maine", "Maine", "Maine", "Main
#> $ state_abb <chr> "ME", "ME", "ME", "ME", "ME", "ME", "ME", "ME", "M#> $ state_abb <chr> "ME", "ME", "ME", "ME", "ME", "ME", "ME", "ME", "M
#> $ incident_date <dttm> 2018-10-23, 2018-10-07, 2018-10-05, 2018-10-05, 2#> $ incident_date <dttm> 2018-10-23, 2018-10-07, 2018-10-05, 2018-10-05, 2
#> $ airport_id <chr> "KPWM", "KPWM", "KPWM", "KPWM", "KPWM", "KPWM", "K#> $ airport_id <chr> "KPWM", "KPWM", "KPWM", "KPWM", "KPWM", "KPWM", "K
#> $ airport <chr> "PORTLAND INTL JETPORT (ME)", "PORTLAND INTL JETPO#> $ airport <chr> "PORTLAND INTL JETPORT (ME)", "PORTLAND INTL JETPO
#> $ operator <chr> "AMERICAN AIRLINES", "AMERICAN AIRLINES", "AMERICA#> $ operator <chr> "AMERICAN AIRLINES", "AMERICAN AIRLINES", "AMERICA
#> $ atype <chr> "A-320", "A-319", "A-319", "EMB-190", "EMB-170", "#> $ atype <chr> "A-320", "A-319", "A-319", "EMB-190", "EMB-170", "
#> $ type_eng <chr> "D", "D", "D", "D", "D", "D", "D", "D", "D", "C", #> $ type_eng <chr> "D", "D", "D", "D", "D", "D", "D", "D", "D", "C",
#> $ species_id <chr> "UNKBS", "ZX302", "ZS010", "I1102", "K3310", "YH00#> $ species_id <chr> "UNKBS", "ZX302", "ZS010", "I1102", "K3310", "YH00
#> $ species <chr> "Unknown bird - small", "Swamp sparrow", "Blackpol#> $ species <chr> "Unknown bird - small", "Swamp sparrow", "Blackpol
#> $ damage <chr> "N", NA, "N", "M?", "N", "N", "N", "N", "N", "N", #> $ damage <chr> "N", NA, "N", "M?", "N", "N", "N", "N", "N", "N",
#> $ num_engs <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,#> $ num_engs <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
#> $ incident_month <dbl> 10, 10, 10, 10, 7, 11, 11, 10, 7, 8, 11, 7, 5, 4, #> $ incident_month <dbl> 10, 10, 10, 10, 7, 11, 11, 10, 7, 8, 11, 7, 5, 4,
#> $ incident_year <dbl> 2018, 2018, 2018, 2018, 2017, 2016, 2016, 2016, 20#> $ incident_year <dbl> 2018, 2018, 2018, 2018, 2017, 2016, 2016, 2016, 20
#> $ time_of_day <chr> NA, "Night", "Night", "Day", "Dawn", "Day", "Day",#> $ time_of_day <chr> NA, "Night", "Night", "Day", "Dawn", "Day", "Day",
#> $ time <dbl> 1310, 1035, 2200, 1645, 645, 1345, 1346, 1400, 110#> $ time <dbl> 1310, 1035, 2200, 1645, 645, 1345, 1346, 1400, 110
#> $ height <dbl> 15, NA, 1000, 0, 0, 0, 0, NA, NA, 2000, 0, 50, 0, #> $ height <dbl> 15, NA, 1000, 0, 0, 0, 0, NA, NA, 2000, 0, 50, 0,
#> $ speed <dbl> 150, NA, 140, 110, NA, NA, NA, NA, NA, 250, 100, N#> $ speed <dbl> 150, NA, 140, 110, NA, NA, NA, NA, NA, 250, 100, N
#> $ phase_of_flt <chr> "departure", "arrival", "arrival", "arrival", "arr#> $ phase_of_flt <chr> "departure", "arrival", "arrival", "arrival", "arr
#> $ sky <chr> "Overcast", "Some Cloud", "Some Cloud", "Some Clou#> $ sky <chr> "Overcast", "Some Cloud", "Some Cloud", "Some Clou
#> $ precip <chr> "None", "None", "None", "None", "None", "None", NA#> $ precip <chr> "None", "None", "None", "None", "None", "None", NA
#> $ cost_repairs_infl_adj <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA#> $ cost_repairs_infl_adj <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
#> $ weekday_name <ord> Tue, Sun, Fri, Fri, Tue, Mon, Mon, Sat, Sat, Wed, #> $ weekday_name <ord> Tue, Sun, Fri, Fri, Tue, Mon, Mon, Sat, Sat, Wed,

Your turnYour turn 1515::0000

17 / 8017 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. 2. Are your variables the right Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. Dates5. Dates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
18 / 8018 / 80

Always check variable types after reading in data!
wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx'))

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ Ranking <chr> "1.0", "2.0", "3.0", "4.0", "5.0", "6.0", "7.0"
#> $ State <chr> "TEXAS", "OKLAHOMA", "IOWA", "CALIFORNIA", "KAN
#> $ `Installed Capacity (MW)` <dbl> 23262, 7495, 7312, 5686, 5110, 4464, 3699, 3213
#> $ `Equivalent Homes Powered` <chr> "6235000.0", "2268000.0", "1935000.0", "1298000
#> $ `Total Investment ($ Millions)` <chr> "42000.0", "13700.0", "14200.0", "12600.0", "94
#> $ `Wind Projects Online` <dbl> 136, 45, 107, 104, 35, 49, 98, 31, 25, 20, 28,
#> $ `# of Wind Turbines` <chr> "12750.0", "3717.0", "4145.0", "6972.0", "2795.

19 / 80

as.numeric()
as.numeric(c("2.1", "3.7", "4.50"))

#> [1] 2.1 3.7 4.5

as.numeric(c("$2.1", "$3.7", "$4.50"))

#> [1] NA NA NA

parse_number()
parse_number(c("2.1", "3.7", "4.50"))

#> [1] 2.1 3.7 4.5

parse_number(c("$2.1", "$3.7", "$4.50"))

#> [1] 2.1 3.7 4.5

parse_number(c("1-800-123-4567"))

#> [1] 1

Be careful converting strings to numbers!

20 / 80

.leftcol[

wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx')) %>%
 mutate(
 Ranking = as.numeric(Ranking),
 `Equivalent Homes Powered` = as.numeric(`Equivalent Homes Powered`),
 `Total Investment ($ Millions)` = as.numeric(`Total Investment ($ Millions)`),
 `# of Wind Turbines` = as.numeric(`# of Wind Turbines`)
)

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ Ranking <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
#> $ State <chr> "TEXAS", "OKLAHOMA", "IOWA", "CALIFORNIA", "KAN
#> $ `Installed Capacity (MW)` <dbl> 23262, 7495, 7312, 5686, 5110, 4464, 3699, 3213
#> $ `Equivalent Homes Powered` <dbl> 6235000, 2268000, 1935000, 1298000, 1719000, 10
#> $ `Total Investment ($ Millions)` <dbl> 42000, 13700, 14200, 12600, 9400, 8900, 7100, 6
#> $ `Wind Projects Online` <dbl> 136, 45, 107, 104, 35, 49, 98, 31, 25, 20, 28,
#> $ `# of Wind Turbines` <dbl> 12750, 3717, 4145, 6972, 2795, 2632, 2428, 1868

21 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. 3. Are your variables the right Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. Dates5. Dates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
22 / 8022 / 80

janitor::clean_names() wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx'))

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ Ranking <chr> "1.0", "2.0",
#> $ State <chr> "TEXAS", "OKLA
#> $ `Installed Capacity (MW)` <dbl> 23262, 7495, 7
#> $ `Equivalent Homes Powered` <chr> "6235000.0", "
#> $ `Total Investment ($ Millions)` <chr> "42000.0", "13
#> $ `Wind Projects Online` <dbl> 136, 45, 107,
#> $ `# of Wind Turbines` <chr> "12750.0", "37

Renaming made easy

23 / 80

janitor::clean_names() library(janitor)

wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx')) %>%
 clean_names()

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ ranking <chr> "1.0", "2.0", "3.0",
#> $ state <chr> "TEXAS", "OKLAHOMA",
#> $ installed_capacity_mw <dbl> 23262, 7495, 7312, 5
#> $ equivalent_homes_powered <chr> "6235000.0", "226800
#> $ total_investment_millions <chr> "42000.0", "13700.0"
#> $ wind_projects_online <dbl> 136, 45, 107, 104, 3
#> $ number_of_wind_turbines <chr> "12750.0", "3717.0",

Renaming made easy

24 / 80

janitor::clean_names() library(janitor)

wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx')) %>%
 clean_names(case = 'lower_camel')

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ ranking <chr> "1.0", "2.0", "3.0", "4
#> $ state <chr> "TEXAS", "OKLAHOMA", "
#> $ installedCapacityMw <dbl> 23262, 7495, 7312, 568
#> $ equivalentHomesPowered <chr> "6235000.0", "2268000.
#> $ totalInvestmentMillions <chr> "42000.0", "13700.0",
#> $ windProjectsOnline <dbl> 136, 45, 107, 104, 35,
#> $ numberOfWindTurbines <chr> "12750.0", "3717.0", "4

Renaming made easy

25 / 80

janitor::clean_names() library(janitor)

wind <- read_excel(here::here(
 'data', 'US_State_Wind_Energy_Facts_2018.xlsx')) %>%
 clean_names(case = 'screaming_snake')

glimpse(wind)

#> Rows: 50
#> Columns: 7
#> $ RANKING <chr> "1.0", "2.0", "3.0",
#> $ STATE <chr> "TEXAS", "OKLAHOMA",
#> $ INSTALLED_CAPACITY_MW <dbl> 23262, 7495, 7312, 5
#> $ EQUIVALENT_HOMES_POWERED <chr> "6235000.0", "226800
#> $ TOTAL_INVESTMENT_MILLIONS <chr> "42000.0", "13700.0"
#> $ WIND_PROJECTS_ONLINE <dbl> 136, 45, 107, 104, 3
#> $ NUMBER_OF_WIND_TURBINES <chr> "12750.0", "3717.0",

Renaming made easy

26 / 80

Example: data on sleeping patterns of different

mammals

glimpse(msleep)

#> Rows: 83
#> Columns: 11
#> $ name <chr> "Cheetah", "Owl monkey", "Mountai
#> $ genus <chr> "Acinonyx", "Aotus", "Aplodontia"
#> $ vore <chr> "carni", "omni", "herbi", "omni",
#> $ order <chr> "Carnivora", "Primates", "Rodenti
#> $ conservation <chr> "lc", NA, "nt", "lc", "domesticat
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667,
#> $ awake <dbl> 11.90, 7.00, 9.60, 9.10, 20.00, 9
#> $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300
#> $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.

select(): more powerful than you probably thought

27 / 80

Use select() to choose which columns to

keep

msleep %>%
 select(name:order, sleep_total:sleep_cycle) %>%
 glimpse()

#> Rows: 83
#> Columns: 7
#> $ name <chr> "Cheetah", "Owl monkey", "Mou
#> $ genus <chr> "Acinonyx", "Aotus", "Aplodon
#> $ vore <chr> "carni", "omni", "herbi", "om
#> $ order <chr> "Carnivora", "Primates", "Rod
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666

Use select() to choose which

columns to drop

msleep %>%
 select(-(name:order)) %>%
 glimpse()

#> Rows: 83
#> Columns: 7
#> $ conservation <chr> "lc", NA, "nt", "l
#> $ sleep_total <dbl> 12.1, 17.0, 14.4,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333
#> $ awake <dbl> 11.90, 7.00, 9.60,
#> $ brainwt <dbl> NA, 0.01550, NA, 0
#> $ bodywt <dbl> 50.000, 0.480, 1.3

select(): more powerful than you probably thought

28 / 80

Select columns that start with "sleep":

msleep %>%
 select(name, starts_with("sleep")) %>%
 glimpse()

#> Rows: 83
#> Columns: 4
#> $ name <chr> "Cheetah", "Owl monkey",
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0

Select columns that contain "eep" and

end with "wt":

msleep %>%
 select(contains("eep"), ends_with("wt")) %>%
 glimpse()

#> Rows: 83
#> Columns: 5
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0
#> $ brainwt <dbl> NA, 0.01550, NA, 0.00029
#> $ bodywt <dbl> 50.000, 0.480, 1.350, 0.

Select columns based on partial column names

29 / 80

Select only numeric columns:

msleep %>%
 select_if(is.numeric) %>%
 glimpse()

#> Rows: 83
#> Columns: 6
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333
#> $ awake <dbl> 11.90, 7.00, 9.60, 9.
#> $ brainwt <dbl> NA, 0.01550, NA, 0.00
#> $ bodywt <dbl> 50.000, 0.480, 1.350,

Select only character columns:

msleep %>%
 select_if(is.character) %>%
 glimpse()

#> Rows: 83
#> Columns: 5
#> $ name <chr> "Cheetah", "Owl monk
#> $ genus <chr> "Acinonyx", "Aotus",
#> $ vore <chr> "carni", "omni", "he
#> $ order <chr> "Carnivora", "Primat
#> $ conservation <chr> "lc", NA, "nt", "lc"

Select columns based on their data type

30 / 80

msleep %>%
 select(everything()) %>%
 glimpse()

#> Rows: 83
#> Columns: 11
#> $ name <chr> "Cheetah", "Owl mo
#> $ genus <chr> "Acinonyx", "Aotus
#> $ vore <chr> "carni", "omni", "
#> $ order <chr> "Carnivora", "Prim
#> $ conservation <chr> "lc", NA, "nt", "l
#> $ sleep_total <dbl> 12.1, 17.0, 14.4,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333
#> $ awake <dbl> 11.90, 7.00, 9.60,
#> $ brainwt <dbl> NA, 0.01550, NA, 0
#> $ bodywt <dbl> 50.000, 0.480, 1.3

msleep %>%
 select(conservation, awake, everything()) %>%
 glimpse()

#> Rows: 83
#> Columns: 11
#> $ conservation <chr> "lc", NA, "nt", "lc", "domes
#> $ awake <dbl> 11.90, 7.00, 9.60, 9.10, 20.
#> $ name <chr> "Cheetah", "Owl monkey", "Mo
#> $ genus <chr> "Acinonyx", "Aotus", "Aplodo
#> $ vore <chr> "carni", "omni", "herbi", "o
#> $ order <chr> "Carnivora", "Primates", "Ro
#> $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.666
#> $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.
#> $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019,

Use select() to reorder variables

31 / 80

Use rename() to just change the name

msleep %>%
 rename(
 animal = name,
 extinction_threat = conservation
) %>%
 glimpse()

#> Rows: 83
#> Columns: 11
#> $ animal <chr> "Cheetah", "Owl mo
#> $ genus <chr> "Acinonyx", "Aotus
#> $ vore <chr> "carni", "omni", "
#> $ order <chr> "Carnivora", "Prim
#> $ extinction_threat <chr> "lc", NA, "nt", "l
#> $ sleep_total <dbl> 12.1, 17.0, 14.4,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333
#> $ awake <dbl> 11.90, 7.00, 9.60,
#> $ brainwt <dbl> NA, 0.01550, NA, 0
#> $ bodywt <dbl> 50.000, 0.480, 1.3

Use select() to change the name and

drop everything else

msleep %>%
 select(
 animal = name,
 extinction_threat = conservation
) %>%
 glimpse()

#> Rows: 83
#> Columns: 2
#> $ animal <chr> "Cheetah", "Owl mo
#> $ extinction_threat <chr> "lc", NA, "nt", "l

Use select() to rename variables

32 / 80

Use rename() to just change the name

msleep %>%
 rename(
 animal = name,
 extinction_threat = conservation
) %>%
 glimpse()

#> Rows: 83
#> Columns: 11
#> $ animal <chr> "Cheetah", "Owl mo
#> $ genus <chr> "Acinonyx", "Aotus
#> $ vore <chr> "carni", "omni", "
#> $ order <chr> "Carnivora", "Prim
#> $ extinction_threat <chr> "lc", NA, "nt", "l
#> $ sleep_total <dbl> 12.1, 17.0, 14.4,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333
#> $ awake <dbl> 11.90, 7.00, 9.60,
#> $ brainwt <dbl> NA, 0.01550, NA, 0
#> $ bodywt <dbl> 50.000, 0.480, 1.3

Use select() + everything() to

change names and keep everything else

msleep %>%
 select(
 animal = name,
 extinction_threat = conservation,
 everything()
) %>%
 glimpse()

#> Rows: 83
#> Columns: 11
#> $ animal <chr> "Cheetah", "Owl mo
#> $ extinction_threat <chr> "lc", NA, "nt", "l
#> $ genus <chr> "Acinonyx", "Aotus
#> $ vore <chr> "carni", "omni", "
#> $ order <chr> "Carnivora", "Prim
#> $ sleep_total <dbl> 12.1, 17.0, 14.4,
#> $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3,
#> $ sleep_cycle <dbl> NA, NA, NA, 0.1333
#> $ awake <dbl> 11.90, 7.00, 9.60,

Use select() to rename variables

33 / 80

Your turnYour turn
Read in theRead in the

hot_dog_winners.xlsxhot_dog_winners.xlsx file and file and

adjust the variable names andadjust the variable names and

types to the following:types to the following:

#> Rows: 42#> Rows: 42
#> Columns: 7#> Columns: 7
#> $ year <dbl> 1980, #> $ year <dbl> 1980,
#> $ competitor.mens <chr> "Paul #> $ competitor.mens <chr> "Paul
#> $ competitor.womens <chr> NA, NA#> $ competitor.womens <chr> NA, NA
#> $ dogs_eaten.mens <dbl> 9.10, #> $ dogs_eaten.mens <dbl> 9.10,
#> $ dogs_eaten.womens <dbl> NA, NA#> $ dogs_eaten.womens <dbl> NA, NA
#> $ country.mens <chr> "Unite#> $ country.mens <chr> "Unite
#> $ country.womens <chr> NA, NA#> $ country.womens <chr> NA, NA

1515::0000
34 / 8034 / 80

Download the template from theDownload the template from the
#class channel#class channel

Make sure you unzip it!Make sure you unzip it!

When done, submit yourWhen done, submit your
quiz1.qmdquiz1.qmd on Blackboard on Blackboard

Quiz 1Quiz 1

1010::0000
35 / 8035 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. 4. Re-coding variablesRe-coding variables

5. Dates5. Dates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
36 / 8036 / 80

Example: Create a variable,

cost_high, that is TRUE if

the repair costs were greater

than the median costs and

FALSE otherwise.

wildlife_impacts1 <- wildlife_impacts %>%
 rename(cost = cost_repairs_infl_adj) %>%
 filter(!is.na(cost)) %>%
 mutate(
 cost_median = median(cost),
 cost_high = ifelse(cost > cost_median, TRUE, FALSE)
)

wildlife_impacts1 %>%
 select(cost, cost_median, cost_high) %>%
 head()

#> # A tibble: 6 × 3
#> cost cost_median cost_high
#> <dbl> <dbl> <lgl>
#> 1 1000 26783 FALSE
#> 2 200 26783 FALSE
#> 3 10000 26783 FALSE
#> 4 100000 26783 TRUE
#> 5 20000 26783 FALSE
#> 6 487000 26783 TRUE

Recoding with ifelse()

37 / 80

Create a variable, season,

based on the

incident_month variable.

wildlife_impacts2 <- wildlife_impacts %>%
 mutate(season = ifelse(
 incident_month %in% c(3, 4, 5), 'spring', ifelse(
 incident_month %in% c(6, 7, 8), 'summer', ifelse(
 incident_month %in% c(9, 10, 11), 'fall', 'winter')))
)

wildlife_impacts2 %>%
 distinct(incident_month, season) %>%
 head()

#> # A tibble: 6 × 2
#> incident_month season
#> <dbl> <chr>
#> 1 12 winter
#> 2 11 fall
#> 3 10 fall
#> 4 9 fall
#> 5 8 summer
#> 6 7 summer

Recoding with nested ifelse()

38 / 80

Create a variable, season,

based on the

incident_month variable.

Note� If you don't include the

final TRUE ~ 'winter'
condition, you'll get NA for

those cases.

wildlife_impacts2 <- wildlife_impacts %>%
 mutate(season = case_when(
 incident_month %in% c(3, 4, 5) ~ 'spring',
 incident_month %in% c(6, 7, 8) ~ 'summer',
 incident_month %in% c(9, 10, 11) ~ 'fall',
 TRUE ~ 'winter')
)

wildlife_impacts2 %>%
 distinct(incident_month, season) %>%
 head()

#> # A tibble: 6 × 2
#> incident_month season
#> <dbl> <chr>
#> 1 12 winter
#> 2 11 fall
#> 3 10 fall
#> 4 9 fall
#> 5 8 summer
#> 6 7 summer

Recoding with case_when()

39 / 80

Create a variable, season,

based on the

incident_month variable.

wildlife_impacts2 <- wildlife_impacts %>%
 mutate(season = case_when(
 between(incident_month, 3, 5) ~ 'spring',
 between(incident_month, 6, 8) ~ 'summer',
 between(incident_month, 9, 11) ~ 'fall',
 TRUE ~ 'winter')
)

wildlife_impacts2 %>%
 distinct(incident_month, season) %>%
 head()

#> # A tibble: 6 × 2
#> incident_month season
#> <dbl> <chr>
#> 1 12 winter
#> 2 11 fall
#> 3 10 fall
#> 4 9 fall
#> 5 8 summer
#> 6 7 summer

Recoding with case_when() with between()

40 / 80

ifelse()

wildlife_impacts3 <- wildlife_impacts %>%
 mutate(num_engs = ifelse(
 num_engs == 1, 'one', ifelse(
 num_engs == 2, 'two', ifelse(
 num_engs == 3, 'three', ifelse(
 num_engs == 4, 'four',
 as.character(num_engs)))))
)

unique(wildlife_impacts3$num_engs)

#> [1] "two" NA "three" "four" "one"

case_when()

wildlife_impacts3 <- wildlife_impacts %>%
 mutate(num_engs = case_when(
 num_engs == 1 ~ 'one',
 num_engs == 2 ~ 'two',
 num_engs == 3 ~ 'three',
 num_engs == 4 ~ 'four')
)

unique(wildlife_impacts3$num_engs)

#> [1] "two" NA "three" "four" "on

case_when() is "cleaner" than ifelse()
Convert the num_engs variable into a word of the number.

41 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(rate, into = c("cases", "population"))

#> # A tibble: 6 × 4
#> country year cases population
#> <chr> <dbl> <chr> <chr>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Break a single variable into two with separate()

42 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(
 rate,
 into = c("cases", "population"),
 sep = "/"
)

#> # A tibble: 6 × 4
#> country year cases population
#> <chr> <dbl> <chr> <chr>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Break a single variable into two with separate()

43 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(
 rate,
 into = c("cases", "population"),
 sep = "/",
 convert = TRUE
)

#> # A tibble: 6 × 4
#> country year cases population
#> <chr> <dbl> <int> <int>
#> 1 Afghanistan 1999 745 19987071
#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272
#> 6 China 2000 213766 1280428583

Break a single variable into two with separate()

44 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(
 year,
 into = c("century", "year"),
 sep = 2
)

#> # A tibble: 6 × 4
#> country century year rate
#> <chr> <chr> <chr> <chr>
#> 1 Afghanistan 19 99 745/19987071
#> 2 Afghanistan 20 00 2666/20595360
#> 3 Brazil 19 99 37737/172006362
#> 4 Brazil 20 00 80488/174504898
#> 5 China 19 99 212258/1272915272
#> 6 China 20 00 213766/1280428583

You can also break up a variable by an index

45 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(year, into = c("century", "year"),
 sep = 2) %>%
 unite(year_new, century, year)

#> # A tibble: 6 × 3
#> country year_new rate
#> <chr> <chr> <chr>
#> 1 Afghanistan 19_99 745/19987071
#> 2 Afghanistan 20_00 2666/20595360
#> 3 Brazil 19_99 37737/172006362
#> 4 Brazil 20_00 80488/174504898
#> 5 China 19_99 212258/1272915272
#> 6 China 20_00 213766/1280428583

unite(): The opposite of separate()

46 / 80

tb_rates

#> # A tibble: 6 × 3
#> country year rate
#> <chr> <dbl> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/2059536
#> 3 Brazil 1999 37737/172006
#> 4 Brazil 2000 80488/174504
#> 5 China 1999 212258/12729
#> 6 China 2000 213766/12804

tb_rates %>%
 separate(year, into = c("century", "year"),
 sep = 2) %>%
 unite(year_new, century, year,
 sep = "")

#> # A tibble: 6 × 3
#> country year_new rate
#> <chr> <chr> <chr>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

unite(): The opposite of separate()

47 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. 5. DatesDates

6. Dealing with messy Excel �les6. Dealing with messy Excel �les
48 / 8048 / 80

49 / 8049 / 80

Year-Month-Day

ymd('2020-02-26')

#> [1] "2020-02-26"

Create dates from strings - order is the ONLY thing that matters!

50 / 80

Year-Month-Day

ymd('2020-02-26')

#> [1] "2020-02-26"

ymd('2020 Feb 26')

#> [1] "2020-02-26"

Create dates from strings - order is the ONLY thing that matters!

51 / 80

Year-Month-Day

ymd('2020-02-26')

#> [1] "2020-02-26"

ymd('2020 Feb 26')

#> [1] "2020-02-26"

ymd('2020 Feb. 26')

#> [1] "2020-02-26"

ymd('2020 february 26')

#> [1] "2020-02-26"

Month-Day-Year

mdy('February 26, 2020')

#> [1] "2020-02-26"

mdy('Feb. 26, 2020')

#> [1] "2020-02-26"

mdy('Feb 26 2020')

#> [1] "2020-02-26"

Day-Month-Year

dmy('26 February 2020')

#> [1] "2020-02-26"

dmy('26 Feb. 2020')

#> [1] "2020-02-26"

dmy('26 Feb, 2020')

#> [1] "2020-02-26"

Create dates from strings - order is the ONLY thing that matters!

52 / 80

Check out the lubridate cheat sheet

53 / 80

https://rawgit.com/rstudio/cheatsheets/master/lubridate.pdf

Get the year
year(date)

#> [1] 2023

Extracting information from dates
date <- today()
date

#> [1] "2023-09-15"

54 / 80

Get the year
year(date)

#> [1] 2023

Get the month
month(date)

#> [1] 9

Get the month name
month(date, label = TRUE, abbr = FALSE)

#> [1] September
#> Levels: January < February < March < April < May < J

Get the day
day(date)

#> [1] 15

Get the weekday
wday(date)

#> [1] 6

Get the weekday name
wday(date, label = TRUE, abbr = TRUE)

#> [1] Fri
#> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Extracting information from dates
date <- today()
date

#> [1] "2023-09-15"

55 / 80

wday(wday("2023-09-13""2023-09-13", label = , label = TRUETRUE))

#> [1] Wed#> [1] Wed
#> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat#> Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Quick practiceQuick practice
On what day of the week were you born?On what day of the week were you born?

56 / 8056 / 80

Modifying date elements
date <- today()
date

#> [1] "2023-09-15"

Change the year
year(date) <- 2016
date

#> [1] "2016-09-15"

Change the day
day(date) <- 30

date

#> [1] "2016-09-30"
57 / 80

Quick practiceQuick practice
What do you think will happen if we do this?What do you think will happen if we do this?

date <- ymd(date <- ymd("2023-02-28""2023-02-28"))
day(date) <- day(date) <- 3030

datedate

#> [1] "2023-03-02"#> [1] "2023-03-02"

58 / 8058 / 80

Your turnYour turn

1� Use 1� Use case_when()case_when() to modify the to modify the phase_of_fltphase_of_flt
variable in the variable in the wildlife_impactswildlife_impacts data: data:

The values The values 'approach''approach', , 'arrival''arrival',,

'descent''descent', and , and 'landing roll''landing roll' should be should be

merged into a single value called merged into a single value called 'arrival''arrival'..

The values The values 'climb''climb', , 'departure''departure', and , and 'take-'take-
off run'off run' should be merged into a single value should be merged into a single value

called called 'departure''departure'..

All other values should be called All other values should be called 'other''other'..

Before:Before:

unique(str_to_lower(wildlife_impacts$phase_of_flt))unique(str_to_lower(wildlife_impacts$phase_of_flt))

#> [1] "climb" "landing roll" NA "appro#> [1] "climb" "landing roll" NA "appro

After:After:

#> [1] "departure" "arrival" "other"#> [1] "departure" "arrival" "other"

2� Use the 2� Use the lubridatelubridate package to create a new package to create a new

variable, variable, weekday_nameweekday_name, from the , from the incident_dateincident_date
variable in the variable in the wildlife_impactswildlife_impacts data. data.

3� Use 3� Use weekday_nameweekday_name and and phase_of_fltphase_of_flt to make to make

this plot of "arrival" and "departure" impacts fromthis plot of "arrival" and "departure" impacts from

Mar. 2016Mar. 2016..

2020::0000

59 / 8059 / 80

Week 3: Week 3: Cleanin� Dat�Cleanin� Dat�
1. Merging datasets with joins1. Merging datasets with joins

2. Are your variables the right 2. Are your variables the right typetype??

3. Are your variables the right 3. Are your variables the right namename??

QUIZ 1QUIZ 1

4. Re-coding variables4. Re-coding variables

5. Dates5. Dates

6. 6. Dealing with messy Excel �lesDealing with messy Excel �les
60 / 8060 / 80

When columns are
repeated
Example: Winners of Nathan's hot

dog eating contest

Stragies
1. divide & conquer

2. pivot long, separate, pivot
wide

61 / 80

Steps:

�� Read in the data

�� Clean the names

�� Remove * note at bottom of

table

hot_dogs <- read_excel(
 here::here('data', 'hot_dog_winners.xlsx'),
 sheet = 'hot_dog_winners') %>%
 clean_names() %>%
 dplyr::filter(!is.na(mens))

glimpse(hot_dogs)

#> Rows: 40
#> Columns: 7
#> $ year <chr> "1980", "1981", "1982", "1983
#> $ mens <chr> "Paul Siederman & Joe Baldini
#> $ dogs_eaten_3 <chr> "9.1", "11", "11", "19.5", "9
#> $ country_4 <chr> "United States", "United Stat
#> $ womens <chr> NA, NA, NA, NA, NA, NA, NA, N
#> $ dogs_eaten_6 <chr> NA, NA, NA, NA, NA, NA, NA, N
#> $ country_7 <chr> NA, NA, NA, NA, NA, NA, NA, N

Strategy 1: divide & conquer

62 / 80

Steps

�� Read in the data

�� Clean the names

�� Remove * note at bottom of

table

�� Split data into two

competitions with the same

variable names

�� Create new variable in each

data frame: competition

hot_dogs_m <- hot_dogs %>%
 select(
 year,
 competitor = mens,
 dogs_eaten = dogs_eaten_3,
 country = country_4) %>%
 mutate(competition = 'Mens')

hot_dogs_w <- hot_dogs %>%
 select(
 year,
 competitor = womens,
 dogs_eaten = dogs_eaten_6,
 country = country_7) %>%
 mutate(competition = 'Womens') %>%
 dplyr::filter(!is.na(competitor))

Strategy 1: divide & conquer

63 / 80

Steps

�� Read in the data

�� Clean the names

�� Remove * note at bottom of

table

�� Split data into two

competitions with the same

variable names

�� Create new variable in each

data frame: competition
�� Merge data together with

bind_rows()
�� Clean up final data frame

hot_dogs <- bind_rows(hot_dogs_m, hot_dogs_w) %>%
 mutate(
 new_record = str_detect(dogs_eaten, "*"),
 dogs_eaten = parse_number(dogs_eaten),
 year = as.numeric(year))

glimpse(hot_dogs)

#> Rows: 49
#> Columns: 6
#> $ year <dbl> 1980, 1981, 1982, 1983, 1984,
#> $ competitor <chr> "Paul Siederman & Joe Baldini"
#> $ dogs_eaten <dbl> 9.10, 11.00, 11.00, 19.50, 9.5
#> $ country <chr> "United States", "United State
#> $ competition <chr> "Mens", "Mens", "Mens", "Mens"
#> $ new_record <lgl> FALSE, FALSE, FALSE, FALSE, FA

Strategy 1: divide & conquer

64 / 80

head(hot_dogs)

#> # A tibble: 6 × 6
#> year competitor dogs_eaten country competit
#> <dbl> <chr> <dbl> <chr> <chr>
#> 1 1980 Paul Siederman & Joe Baldini 9.1 United States Mens
#> 2 1981 Thomas DeBerry 11 United States Mens
#> 3 1982 Steven Abrams 11 United States Mens
#> 4 1983 Luis Llamas 19.5 Mexico Mens
#> 5 1984 Birgit Felden 9.5 Germany Mens
#> 6 1985 Oscar Rodriguez 11.8 United States Mens

65 / 80

Steps:

�� Read in the data

�� Clean the names

�� Remove * note at bottom of

table

hot_dogs <- read_excel(
 here::here('data', 'hot_dog_winners.xlsx'),
 sheet = 'hot_dog_winners') %>%
 clean_names() %>%
 dplyr::filter(!is.na(mens))

glimpse(hot_dogs)

#> Rows: 40
#> Columns: 7
#> $ year <chr> "1980", "1981", "1982", "1983
#> $ mens <chr> "Paul Siederman & Joe Baldini
#> $ dogs_eaten_3 <chr> "9.1", "11", "11", "19.5", "9
#> $ country_4 <chr> "United States", "United Stat
#> $ womens <chr> NA, NA, NA, NA, NA, NA, NA, N
#> $ dogs_eaten_6 <chr> NA, NA, NA, NA, NA, NA, NA, N
#> $ country_7 <chr> NA, NA, NA, NA, NA, NA, NA, N

Strategy 2: pivot long, separate, pivot wide

66 / 80

Steps:

�� Read in the data

�� Clean the names

�� Remove * note at bottom of

table

�� Rename variables

�� Gather all the "joint"

variables

hot_dogs <- hot_dogs %>%
 select(
 year,
 competitor.mens = mens,
 competitor.womens = womens,
 dogs_eaten.mens = dogs_eaten_3,
 dogs_eaten.womens = dogs_eaten_6,
 country.mens = country_4,
 country.womens = country_7) %>%
 pivot_longer(names_to = 'variable', values_to =
 competitor.mens:country.womens)

head(hot_dogs, 3)

#> # A tibble: 3 × 3
#> year variable value
#> <chr> <chr> <chr>
#> 1 1980 competitor.mens Paul Siederman & Joe Bal
#> 2 1980 competitor.womens <NA>
#> 3 1980 dogs_eaten.mens 9.1

Strategy 2: pivot long, separate, pivot wide

67 / 80

Steps:

�� Read in the data

�� Clean the names

�� Remove * note at

bottom of table

�� Rename variables

�� Gather all the "joint"

variables

�� Separate "joint"

variables into

components

hot_dogs <- hot_dogs %>%
 separate(variable, into = c('variable', 'competition'),
 sep = '\\.')

head(hot_dogs)

#> # A tibble: 6 × 4
#> year variable competition value
#> <chr> <chr> <chr> <chr>
#> 1 1980 competitor mens Paul Siederman & Joe Baldini
#> 2 1980 competitor womens <NA>
#> 3 1980 dogs_eaten mens 9.1
#> 4 1980 dogs_eaten womens <NA>
#> 5 1980 country mens United States
#> 6 1980 country womens <NA>

Strategy 2: pivot long, separate, pivot wide

68 / 80

Steps:

�� Read in the data

�� Clean the names

�� Remove * note at

bottom of table

�� Rename variables

�� Gather all the "joint"

variables

�� Separate "joint"

variables into

components

�� Spread variable and

value back to

columns

�� Clean up final data

hot_dogs <- hot_dogs %>%
 spread(key = variable, value = value) %>%
 mutate(
 new_record = str_detect(dogs_eaten, "*"),
 dogs_eaten = parse_number(dogs_eaten),
 year = as.numeric(year))

glimpse(hot_dogs)

#> Rows: 80
#> Columns: 6
#> $ year <dbl> 1980, 1980, 1981, 1981, 1982, 1982, 198
#> $ competition <chr> "mens", "womens", "mens", "womens", "me
#> $ competitor <chr> "Paul Siederman & Joe Baldini", NA, "Th
#> $ country <chr> "United States", NA, "United States", N
#> $ dogs_eaten <dbl> 9.10, NA, 11.00, NA, 11.00, NA, 19.50,
#> $ new_record <lgl> FALSE, NA, FALSE, NA, FALSE, NA, FALSE,

Strategy 2: pivot long, separate, pivot wide

69 / 80

Divide & conquer

hot_dogs <- read_excel(
 here::here('data', 'hot_dog_winners.xlsx'),
 sheet = 'hot_dog_winners') %>%
 clean_names() %>%
 dplyr::filter(!is.na(mens))

Divide
hot_dogs_m <- hot_dogs %>%
 select(
 year,
 competitor = mens,
 dogs_eaten = dogs_eaten_3,
 country = country_4) %>%
 mutate(competition = 'Mens')
hot_dogs_w <- hot_dogs %>%
 select(
 year,
 competitor = womens,
 dogs_eaten = dogs_eaten_6,
 country = country_7) %>%
 mutate(competition = 'Womens') %>%
 dplyr::filter(!is.na(competitor))

Merge and finish cleaning
hot_dogs <- bind_rows(hot_dogs_m, hot_dogs_w) %>%
 mutate(
 new_record = str_detect(dogs_eaten, "*"),
 dogs_eaten = parse_number(dogs_eaten),
 year = as.numeric(year))

Pivot long, separate, pivot wide

hot_dogs <- read_excel(
 here::here('data', 'hot_dog_winners.xlsx'),
 sheet = 'hot_dog_winners') %>%
 clean_names() %>%
 dplyr::filter(!is.na(mens)) %>%

 # Rename variables
 select(
 year,
 competitor.mens = mens,
 competitor.womens = womens,
 dogs_eaten.mens = dogs_eaten_3,
 dogs_eaten.womens = dogs_eaten_6,
 country.mens = country_4,
 country.womens = country_7) %>%
 # Gather "joint" variables
 pivot_longer(names_to = 'variable', values_to = 'va
 competitor.mens:country.womens) %>%
 # Separate "joint" variables
 separate(variable, into = c('variable', 'competitio
 sep = '\\.') %>%
 # Spread "joint" variables
 pivot_wider(names_from = variable, values_from = va
 # Finish cleaning
 mutate(
 new_record = str_detect(dogs_eaten, "*"),
 dogs_eaten = parse_number(dogs_eaten),
 year = as.numeric(year))

70 / 80

Strategies for
dealing with
sub-headers

Example:

OICA passenger car

sales data

71 / 80

Steps:

�� Read in the data, skipping first

5 rows

�� Clean the names

pc_sales <- read_excel(
 here::here('data', 'pc_sales_2018.xlsx'),
 sheet = 'pc_sales', skip = 5) %>%
 clean_names() %>%
 rename(country = regions_countries)

glimpse(pc_sales)

#> Rows: 160
#> Columns: 18
#> $ country <chr> NA, "EUROPE", "EU 28 countries + E
#> $ x2 <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA
#> $ x3 <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA
#> $ x4 <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA
#> $ x2005 <dbl> NA, 17906455, 15622035, 14565695,
#> $ x2006 <dbl> NA, 18685556, 15961138, 14820182,
#> $ x2007 <dbl> NA, 19618588, 16147274, 14842186,
#> $ x2008 <dbl> NA, 18821599, 14911880, 13602038,
#> $ x2009 <dbl> NA, 16608761, 14533115, 13668808,
#> $ x2010 <dbl> NA, 16499863, 13830694, 12984549,
#> $ x2011 <dbl> NA, 17167600, 13642659, 12815435,

Strategies for dealing with sub-headers

72 / 80

Steps:

�� Read in the data,

skipping first 5 rows

�� Clean the names

�� Drop bad columns

�� Filter out bad rows

Use datapasta to get

rows to drop

drop <- c(
 'EUROPE', 'EU 28 countries + EFTA',
 'EU 15 countries + EFTA', 'EUROPE NEW MEMBERS',
 'RUSSIA, TURKEY & OTHER EUROPE', 'AMERICA',
 'NAFTA', 'CENTRAL & SOUTH AMERICA',
 'ASIA/OCEANIA/MIDDLE EAST', 'AFRICA', 'ALL COUNTRIES')

pc_sales <- pc_sales %>%
 select(-c(x2:x4)) %>% # Drop bad columns
 filter(! country %in% drop, # Drop bad rows
 ! is.na(country))

head(pc_sales)

#> # A tibble: 6 × 15
#> country x2005 x2006 x2007 x2008 x2009 x2010
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 AUSTRIA 307915 308594 298182 293697 319403 328563
#> 2 BELGIUM 480088 526141 524795 535947 476194 547340
#> 3 DENMARK 148819 156936 162686 150199 112454 153858
#> 4 FINLAND 148161 145700 125608 139669 90574 111968

Strategies for dealing with sub-headers

73 / 80

Steps:

�� Read in the data,

skipping first 5 rows

�� Clean the names

�� Drop bad columns

�� Filter out bad rows

�� Gather the year

variables

pc_sales <- pc_sales %>%
 pivot_longer(names_to = 'year', values_to = 'num_cars',
 cols = x2005:x2018)

head(pc_sales)

#> # A tibble: 6 × 3
#> country year num_cars
#> <chr> <chr> <dbl>
#> 1 AUSTRIA x2005 307915
#> 2 AUSTRIA x2006 308594
#> 3 AUSTRIA x2007 298182
#> 4 AUSTRIA x2008 293697
#> 5 AUSTRIA x2009 319403
#> 6 AUSTRIA x2010 328563

Strategies for dealing with sub-headers

74 / 80

Steps:

�� Read in the data,

skipping first 5 rows

�� Clean the names

�� Drop bad columns

�� Filter out bad rows

�� Gather the year

variables

�� Separate the "x"

from the year

pc_sales <- pc_sales %>%
 separate(year, into = c('drop', 'year'), sep = 'x',
 convert = TRUE)

head(pc_sales)

#> # A tibble: 6 × 4
#> country drop year num_cars
#> <chr> <lgl> <int> <dbl>
#> 1 AUSTRIA NA 2005 307915
#> 2 AUSTRIA NA 2006 308594
#> 3 AUSTRIA NA 2007 298182
#> 4 AUSTRIA NA 2008 293697
#> 5 AUSTRIA NA 2009 319403
#> 6 AUSTRIA NA 2010 328563

Strategies for dealing with sub-headers

75 / 80

Steps:

�� Read in the data,

skipping first 5 rows

�� Clean the names

�� Drop bad columns

�� Filter out bad rows

�� Gather the year

variables

�� Separate the "x" from

the year

�� Remove the drop
column

�� Finish cleaning

pc_sales <- pc_sales %>%
 select(-drop) %>%
 mutate(country = str_to_title(country))

head(pc_sales)

#> # A tibble: 6 × 3
#> country year num_cars
#> <chr> <int> <dbl>
#> 1 Austria 2005 307915
#> 2 Austria 2006 308594
#> 3 Austria 2007 298182
#> 4 Austria 2008 293697
#> 5 Austria 2009 319403
#> 6 Austria 2010 328563

Strategies for dealing with sub-headers

76 / 80

What if I wanted to keep the continents?
Strategy: Join a new data frame linking country -> continent

77 / 80

drop <- c(
 'EUROPE', 'EU 28 countries + EFTA',
 'EU 15 countries + EFTA', 'EUROPE NEW MEMBERS',
 'RUSSIA, TURKEY & OTHER EUROPE', 'AMERICA',
 'NAFTA', 'CENTRAL & SOUTH AMERICA',
 'ASIA/OCEANIA/MIDDLE EAST', 'AFRICA', 'ALL COUNTRIES')

pc_sales <- read_excel(
 here::here('data', 'pc_sales_2018.xlsx'),
 sheet = 'pc_sales', skip = 5) %>%
 clean_names() %>%
 rename(country = regions_countries) %>%
 select(-c(x2:x4)) %>% # Drop bad columns
 filter(! country %in% drop, # Drop bad rows
 ! is.na(country)) %>%
 pivot_longer(
 names_to = 'year', values_to = 'num_cars',
 cols = x2005:x2018) %>%
 separate(year, into = c('drop', 'year'), sep = 'x',
 convert = TRUE) %>%
 select(-drop)

head(pc_sales, 3)

#> # A tibble: 3 × 3
#> country year num_cars
#> <chr> <int> <dbl>
#> 1 AUSTRIA 2005 307915
#> 2 AUSTRIA 2006 308594
#> 3 AUSTRIA 2007 298182

78 / 80

pc_regions <- read_csv(here::here(
 "data", "pc_regions.csv"))

head(pc_regions)

#> # A tibble: 6 × 3
#> country region subregion
#> <chr> <chr> <chr>
#> 1 AUSTRIA EUROPE EU 15 countries + EFTA
#> 2 BELGIUM EUROPE EU 15 countries + EFTA
#> 3 DENMARK EUROPE EU 15 countries + EFTA
#> 4 FINLAND EUROPE EU 15 countries + EFTA
#> 5 FRANCE EUROPE EU 15 countries + EFTA
#> 6 GERMANY EUROPE EU 15 countries + EFTA

pc_sales <- pc_sales %>%
 left_join(pc_regions)

head(pc_sales)

#> # A tibble: 6 × 5
#> country year num_cars region subregion
#> <chr> <int> <dbl> <chr> <chr>
#> 1 AUSTRIA 2005 307915 EUROPE EU 15 cou
#> 2 AUSTRIA 2006 308594 EUROPE EU 15 cou
#> 3 AUSTRIA 2007 298182 EUROPE EU 15 cou
#> 4 AUSTRIA 2008 293697 EUROPE EU 15 cou
#> 5 AUSTRIA 2009 319403 EUROPE EU 15 cou
#> 6 AUSTRIA 2010 328563 EUROPE EU 15 cou

Strategy 1: Find another source

Strategy 2: Hand-make it

79 / 80

drop <- c(
 'EUROPE', 'EU 28 countries + EFTA',
 'EU 15 countries + EFTA', 'EUROPE NEW MEMBERS',
 'RUSSIA, TURKEY & OTHER EUROPE', 'AMERICA',
 'NAFTA', 'CENTRAL & SOUTH AMERICA',
 'ASIA/OCEANIA/MIDDLE EAST', 'AFRICA', 'ALL COUNTRIES')

pc_regions <- read_csv(here::here("data", "pc_regions.csv"))

pc_sales <- read_excel(
 here::here('data', 'pc_sales_2018.xlsx'),
 sheet = 'pc_sales', skip = 5) %>%
 clean_names() %>%
 rename(country = regions_countries) %>%
 select(-c(x2:x4)) %>% # Drop bad columns
 filter(! country %in% drop, # Drop bad rows
 ! is.na(country)) %>%
 pivot_longer(
 names_to = 'year', values_to = 'num_cars',
 cols = x2005:x2018) %>%
 separate(year, into = c('drop', 'year'), sep = 'x',
 convert = TRUE) %>%
 select(-drop) %>%
 left_join(pc_regions) %>%
 mutate(
 country = str_to_title(country),
 region = str_to_title(region),
 subregion = str_to_title(subregion))

head(pc_sales)

#> # A tibble: 6 × 5
#> country year num_cars region subregion
#> <chr> <int> <dbl> <chr> <chr>
#> 1 Austria 2005 307915 Europe Eu 15 Countries + Efta
#> 2 Austria 2006 308594 Europe Eu 15 Countries + Efta
#> 3 Austria 2007 298182 Europe Eu 15 Countries + Efta
#> 4 Austria 2008 293697 Europe Eu 15 Countries + Efta
#> 5 Austria 2009 319403 Europe Eu 15 Countries + Efta
#> 6 Austria 2010 328563 Europe Eu 15 Countries + Efta

80 / 80

