Week 6: Visualizing Information

m EMSE 4572/6572: Exploratory Data Analysis

Sohn Paul Helveston

October 04, 2023

References:

- Data Viz "Cheat Sheet"
- Data Viz Reference Page

From here

"Having word processing software doesn't make us great writers."

- Stephen Few

We don't write paragraphs like this

People sometimes do this [use poor graphic choices] because they've seen similar charts in newspapers or on the web and they're naively following a bad example. People who know better sometimes do this because they <u>care more</u> about the visual impact than the clarity of communication. If we wanted to tell the truth in a way people can easily understand, this is not an effective approach.

Image from Few (2012, pg. 227)

So don't make graphs like this

Week 6: Visualizing Information

- 1. The Human Visual-Memory System
- 2. The Psychology of Data Viz
- BREAK
- 3. 10 Data Viz Best Practices
- 4. Making a (good) ggplot

Week 6: Visualizing Information

1. The Human Visual-Memory System

2. The Psychology of Data Viz

BREAK

3. 10 Data Viz Best Practices

4. Making a (good) ggplot

Good visualizations optimize for the human visual-memory system

Iconic memory

- < 1 sec.
- "Pre-attentive"

Two objectives of effective charts:

- 1. Grab & direct attention (iconic memory)
- 2. Reduce processing demands (working memory)

The power of pre-attentive processing Count all the "5"'s

The power of pre-attentive processing Count all the "5"'s

Form

Orientation	Line Length	Line Width	Size
	11.11		
1/1			
	1		

Shape Curvature		Added Marks	Enclosure
)))))))))))		

Color

Spatial Position

Pre-attentive attributes

Form

Orientation	Line Length	Line Width	Size
1/1			

Shape Curvature Added Marks Enclosure | | | | |))) | | | | | | | | | | | | | | • | | | |))) |))) |))) | | | | | | | | | | | | | | | |

Color

Pre-attentive attributes

Numerical (ratio) data

Form

Orientation	Line Length	Line Width	Size
1/1			

Color

ter	nsity			Hue			
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

Pre-attentive attributes

Numerical (ratio) data Categorical (ordinal) data

19 / 147

Not all pre-attentive attributes are equal

Where is the red dot?

For categorical data:

1. Hue (color) > shape

2. Less is more (stay in working memory!)

Week 6: Visualizing Information

- 1. The Human Visual-Memory System
- 2. The Psychology of Data Viz
- BREAK
- 3. 10 Data Viz Best Practices
- 4. Making a (good) ggplot

Much of the content in this section is from John Rauser's <u>talk</u> on YouTube

(Always cite your sources)

Graphical Perception and Graphical Methods for Analyzing Scientific Data

William S. Cleveland and Robert McGill

Graphs provide powerful tools both for analyzing scientific data and for communicating quantitative information. The computer graphics revolution, which began in the 1960's and has intensified during the past several years, stimulated the invention of graphical methmation from graphs; theory and experimental data are then used to order the tasks on the basis of accuracy. The ordering has an important application: data should be encoded so that the visual decoding involves tasks as high in the ordering as possible, that is, tasks per-

Summary, Graphical perception is the visual decoding of the guantitative and gualitative information encoded on graphs. Recent investigations have uncovered basic principles of human graphical perception that have important implications for the display of data. The computer graphics revolution has stimulated the invention of many graphical methods for analyzing and presenting scientific data, such as box plots, two-tiered error bars, scatterplot smoothing, dot charts, and graphing on a log base 2 scale.

ods: types of graphs and types of quantitative information to be shown on graphs (1-4). One purpose of this article is to describe and illustrate several of these presented, set aside, and replaced by new methods.

What has been missing, until recently, in this period of rapid graphical invention and deployment is the study of graphs and the human visual system. When a graph is constructed, quantitative and categorical information is encoded, chiefly through position, shape, size, symbols, and color. When a person looks at a graph, the information is visually decoded by the person's visual sys-

formed with greater accuracy. This is illustrated by several examples in which some much-used graphical forms are new methods.

Elementary Tasks for the Graphical Perception of Quantitative Information

The first step is to identify elementary graphical-perception tasks that are used to visually extract quantitative information from a graph. (By "quantitative information" we mean numerical values al field that comes without apparent mental effort. We also perform cognitive tasks such as reading scale information. but much of the power of graphs-and what distinguishes them from tablescomes from the ability of our preattentive visual system to detect geometric patterns and assess magnitudes. We have examined preattentive processes rather than cognition.

We have studied the elementary graphical-perception tasks theoretically. borrowing ideas from the more general field of visual perception (7, 8), and experimentally by having subjects judge graphical elements (1, 5). The next two sections illustrate the methodology with a few examples.

Study of Graphical Perception: Theory

Figure 2 provides an illustration of theoretical reasoning that borrows some ideas from the field of computational vision (8). Suppose that the goal is to judge the ratio, r, of the slope of line segment BC to the slope of line segment AB in each of the three panels. Our visual system tells us that r is greater than 1 in each panel, which is correct. Our visual system also tells us that r is closer to 1 in the two rectangular panels than in the square panel; that is, the slope of BC appears closer to the slope of AB in the two rectangular panels than in the square panel. This, however, is incorrect; r is the same in all three panels.

The reason for the distortion in judging Fig. 2 is that our visual system is geared to judging angle rather than slope. In their work on computational theories of vision in artificial intelligence, Marr (8) and Stevens (9) have investigated how people judge the slant and tilt (10) of the surfaces of three-dimensional objects. They argue that we judge slant and tilt as

Cleveland, W. S., & McGill, R. (1985). Graphical perception and graphical methods for analyzing scientific data. Science, New Series, 229(4716), 828-833.

Cleveland's operations of pattern perception:

- 1. Estimation
- 2. Assembly
- 3. Detection

Cleveland's operations of pattern perception:

1. Estimation ----->

2. Assembly

3. Detection

- **Discrimination** (X equal to Y?)
- Ranking (X greater than Y?)
- Ratioing (X double Y?)

Estimation: Hierarchy for numerical data

More Accurate

Less Accurate

Example: Life expectancy in countries in Asia

#>	country	lifeExp
#> 1	Afghanistan	43.828
#> 2	Iraq	59.545
# > 3	Cambodia	59 . 723
# > 4	Myanmar	62.069
<i>#</i> > 5	Yemen, Rep.	62.698
<i>#</i> > 6	Nepal	63.785
#> 7	Bangladesh	64.062
#> 8	India	64.698
# > 9	Pakistan	65.483
<i>#</i> > 10	Mongolia	66.803
#> 11	Korea, Dem. Rep.	67.297
<i>#</i> > 12	Thailand	70.616
#> 13	Indonesia	70.650
#> 14	Iran	70.964
<i>#</i> > 15	Philippines	71.688
<i>#</i> > 16	Lebanon	71.993
<i>#</i> > 17	Jordan	72.535
#> 18	Saudi Arabia	72.777
#> 19	China	72.961
#> 20	West Bank and Gaza	73.422

31 / 147

1. Position on a common scale

- 2. Position on non-aligned scales
- 3. Length
- 4. Angle
- 5. Area
- 6. Color saturation
- 7. Color hue

	Yemen, Rep	
1. Position on a	- West Bank and Gaza	
common scale	Thailand -	
	Taiwan -	
2. Position on	Syria -	
non-aligned scales	Singapore - Saudi Arabia -	
	Philippines -	
3. Length	Pakistan -	
1 Angle	Oman -	lifeExp
	Nepai - Myanmar -	- 80
5. Area	Mongolia -	00
6 Color saturation	Malaysia -	70
	Lebanon -	70
/. Color hue	Kuwalt - Korea Dem Ben -	
	Korea, Dem. Rep Korea -	60
	Jordan -	
	Japan -	- 50
	Israel -	
• 🔽 / 🗙 Discriminate	liaq - Iran -	
	Indonesia -	
• 🗹 / 🗙 Rank	India -	
A Y Patio	Hong Kong, China -	
	China - Cambodia -	
	Bangladesh -	
	Bahrain -	
	Afghanistan -	

	Japan -	
1. Position on a	Hong Kong, China -	
common scalo		
COMMON SCALE	Korea -	
2. Position on	Taiwan -	
non-aligned scales	Kuwait -	
	Babrain -	
3. Length	Vietnam -	
1 Angle	Malaysia -	lifeExp
	Syria -	80
5. Area	- China -	00
6 Color saturation	Saudi Arabia -	70
	Jordan -	70
/. Color hue	- Lebanon - Philippines	
	Iran -	60
Sorting bolns a hit	Indonesia -	
Soluting helps a bit	- Thailand	50
	Korea, Dem. Rep Mongolia -	
• 🖂 / 🗙 Discriminate	Pakistan -	
	India -	
• 🗹 / 🗡 Rank	Bangladesh -	
• × Ratio	Yemen Ben -	
	Myanmar -	
	Cambodia -	
	- Iraq - Afghanistan	
	Cambodia - Iraq - Afghanistan -	

	Japan -		
1. Position on a	Hong Kong, China -		
common scale	- Singapore		
	Korea -		
2. Position on	Taiwan -		
non-aligned scales	Kuwait -		
	Bahrain -		
3. Length	Vietnam -		_
1 Analo	Malaysia -	lifeE	Ехр
	Syria -		80
5. Area	- China		80
6 Color saturation	Saudi Arabia -		70
	Jordan -		70
7. Color hue	Lebanon -		
	- Philippines - Iran		60
	Indonesia -		
	Thailand -		50
	Korea, Dem. Rep		
• 🔽 / 🗙 Discriminate	Niongolia - Pakistan -		
	India -		
• 🗹 / 🗙 Rank	Bangladesh -		
• Y Patio	Nepal -		
	Yemen, Rep Myanmar -		
	Cambodia -		
	Iraq -		
	Afghanistan -		

	Japan -		
. Position on a	Hong Kong, China -		
common scale	Singapore -		
	Korea -		
. Position on	Taiwan - Kuwait -		
non-aligned scales	Oman -		
lenath	Bahrain -		
	Vietnam - Malaysia -	lifeF	- - - -
Angle	Syria -		
Area	West Bank and Gaza -		80
	China - Saudi Arabia -		60
. Color saturation	Jordan -		00
. Color hue	Lebanon -		40
	Philippines -		40
	Indonesia -		20
lign to 0 scale:	Thailand -		20
	Korea, Dem. Rep		0
🔽 / 🗙 Discriminate	Wongolla - Pakistan -		U
	India -		
• 🗹 / 🗙 Rank	Bangladesh -		
🗸 / 🗙 Ratio	Nepal - Vomon Bon -		
	Myanmar -		
	Cambodia -		
	Iraq -		
	Argnanistan -		

5

6

А
- 1. Position on a common scale
- 2. Position on non-aligned scales
- 3. Length
- 4. Angle
- 5. **Area**
- 6. Color saturation
- 7. Color hue

- 🗹 / 🗙 Discriminate
- 🗹 / 🗙 Rank
- 🗹 / 🗙 Ratio

lifeExp				
	50			
	60			
	70			
	80			

1. Position on a common scale

- 2. Position on non-aligned scales
- 3. Length
- 4. Angle
- 5. **Area**
- 6. Color saturation
- 7. Color hue

Area works okay for "bubble" charts

- 1. Position on a common scale
- 2. Position on non-aligned scales
- 3. Length

4. Angle

- 5. Area
- 6. Color saturation
- 7. Color hue

- 🗹 / 🗙 Discriminate
- 🗹 Rank
- 🗹 / 🗙 Ratio

- 1. Position on a common scale
- 2. Position on non-aligned scales
- 3. Length

4. Angle

- 5. Area
- 6. Color saturation
- 7. Color hue

 Position on a common scale
 Position on

non-aligned scales

3. Length

4. Angle

5. Area

6. Color saturation

7. Color hue

- 🗹 / 🗙 Discriminate
- 🗹 / 🗙 Rank
- 🗹 Ratio

1. Position on a common scale

2. Position on non-aligned scales

- 3. Length
- 4. Angle
- 5. Area
- 6. Color saturation
- 7. Color hue

- 🗹 / 🗙 Rank
- 🗹 Ratio

Cleveland's operations of pattern perception:

- 1. Estimation
- 2. Assembly
- 3. Detection

Cleveland's operations of pattern perception:

1. Estimation

2. Assembly -----> The grouping of graphical elements

3. Detection

Assembly: Gestalt Psychology

The whole has a reality that is entirely separate from the parts

Reification

Emergence

Prägnanz

We strongly prefer to interpret stimuli as regular, simple, and orderly

Prägnanz

This should cause you cognitive pain

It's the graphical equivalent of this:

Yemen, Rep. West Bank and Gaza Vietnam Thailand Taiwan Syria Singapore Saudi Arabia Philippines Pakistan Oman Nepal Myanmar Mongolia Malaysia Lebanon Kuwait Korea, Dem. Rep. Korea Jordan Japan Israel Iraq Iran Indonesia India Hong Kong, China China Cambodia Bangladesh Bahrain Afghanistan -60 50 70 80 lifeExp

Prägnanz

This makes our brains happy

Law of Continuity

We will group together objects that follow an established direction

Law of Continuity

We will group together objects that follow an established direction

Law of Proximity

We tend to see elements that are *physically near* each other as part of the same object

Law of Proximity

We tend to see elements that are *physically near* each other as part of the same object

Law of Proximity

We tend to see elements that are *physically near* each other as part of the same object

Cleveland's operations of pattern perception:

- 1. Estimation
- 2. Assembly
- 3. Detection

Estimation: Hierarchy for numerical data

More Accurate

Less Accurate

Assembly: Gestalt Psychology

Law of Closure	Prägnanz	Law of Continuity	Law of Similarity	Law of Proximity
Fill in the missing information	We like regular, simple, and orderly	Group together objects with established direction	Physically <i>similar</i> = same object	Physically <i>near</i> = same object
2.0 1.5 > 1.0 0.5 0.0 0.5 1.0 0.5 1.0 1.5 0.5 1.0 1.5 1.0 1.5 1.0 1.5 2.0	Venen, Rep. West Bark et More Trailed Songatore Series Songatore Series Songatore Series Songatore Series Crean Crean Crean Crean Margina Songatore Series Crean Margina Songatore Series Crean Margina Songatore Series Crean Margina Songatore Series Crean Margina Songatore Series Songatore Series Songatore Series	$\begin{array}{c} 300 \\ 200 \\ 100 \\ 0 \\ 100 \\ 10 \\ 15 \\ 200 \\ 25 \\ 30 \\ 35 \end{array}$	$ \begin{array}{c} 300 \\ 200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 0 \\ 15 \\ 20 \\ 25 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	5.000 4.000 3.000 2.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.0000000 1.00000000
			$\begin{array}{c} 300 \\ 200 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 10 \\ 1$	5,000 4,000 2,000 1,000 0 1,000 0 1,100 0 1,102 5,11 VS2 VS1 VS2 VVS1 IF

Cleveland's operations of pattern perception:

- 1. Estimation
- 2. Assembly
- 3. Detection ----->

Recognizing that a geometric object encodes a physical value

Norman door (n.):

- 1. A door where the design tells you to do the opposite of what you're actually supposed to do.
- 2. A door that gives the wrong signal and needs a sign to correct it.

Norman door PUSH

Non-Norman door

The white circles you see at the intersections is called the "Hermann Grid illusion"

Break!

Stand up, Move around, Stretch!

Week 6: Visualizing Information

- 1. The Human Visual-Memory System
- 2. The Psychology of Data Viz
- BREAK
- 3. 10 Data Viz Best Practices
- 4. Making a (good) ggplot

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

"Erase non-data ink."

— Ed Tufte

Total House and Senate campaign expenditures

Figure 1.6: `Monstrous Costs' by Nigel Holmes, in Healy, 2018

Created by Darkhorse Analytics

www.darkhorseanalytics.com

Figure 24.1: From Data Looks Better Naked by Darkhorse Analytics

Before

Calories per 100g

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Humans aren't good at distinguishing 3D space

Penrose Stairs, made famous by M.C. Escher (1898-1972)

Ink proportions != true proportions

Occlusion: geoms are obscured

Please never do this.

3D plots are ambiguous without a projection.

Each point has a whole line of possible 3D locations.

Do you mean...

Multiple interpretations

group 1

group 2

group 3

The third dimension distracts from the data

(this is what Tufte calls "chart junk")

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

"Lie Factor" =
$$\frac{\text{Size of effect in graphic}}{\text{Size of effect in data}}$$

"Lie Factor" =
$$\frac{\text{Size of effect in graphic}}{\text{Size of effect in data}} = \frac{\frac{5.3-0.6}{0.6}}{\frac{27.5-18}{18}} = \frac{7.83}{0.53} = 14.8$$

Edward Tufte (2001) "The Visual Display of Quantitative Information", 2nd Edition, pg. 57-58.

Image from http://livingqlikview.com/the-9-worst-data-visualizationsever-created/

Don't cherry-pick your data

Image from https://www.mediamatters.org/fox-news/fox-news-newestdishonest-chart-immigration-enforcement

Make sure your chart makes sense

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Exceptions:

- Small data
- Simple fractions
- If sum of parts matters

Best pie chart of all time

Sunny side of pyramid

Shady side of pyramid

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Stacked bars are rarely a good idea

"Parallel coordinates" plot usually works better

Exception: When you care about the *total* more than the categories

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Rotate axes if you can't read them

Exception: Ordinal variables

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Directly label geoms

Exception: When you have repeated categories

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

10% of males and 1% of females are color blind

Facets can be used to avoid color altogether

10 Data Viz Best Practices

- 1. Remove chart chunk
- 2. Don't make 3D plots*
- 3. Don't lie
- 4. Don't use pie charts for proportions*
- 5. Don't stack bars*
- 6. Rotate and sort categorical axes*
- 7. Eliminate legends & directly label geoms*
- 8. Don't use pattern fills
- 9. Don't use red & green together
- 10. Consider tables for small data sets

*most of the time

Who do you think did a better job in tonight's debate?

	Clinton	Trump
Among Democrats	99%	1%
Among Republicans	53%	47%

References:

- Data Viz "Cheat Sheet"
- Data Viz Reference Page

For your "bad" visualization:

1) Identify where the graphic falls on Cleveland's pattern recognition hierarchy

2) Any design rules that are broken

3) Suggest at least two improvements

Most fatal bear attacks occur in July and August

Total fatal bear attacks (grizzly, black, and polar), 1900 to present

BEAR ATTACKS IN U.S. PARKS & WILDERNESS AREAS

Most fatal bear attacks occur in July and August

Total fatal bear attacks by grizzly, black and polar bears from 1900 to present

Week 6: Visualizing Information

- 1. The Human Visual-Memory System
- 2. The Psychology of Data Viz
- BREAK
- 3. 10 Data Viz Best Practices4. Making a (good) ggplot

Making a (good) ggplot

Before:

Making a (good) ggplot

- 1. Format data frame
- 2. Add geoms
- 3. Flip coordinates?
- 4. Reorder factors?
- 5. Adjust scales
- 6. Adjust theme
- 7. Annotate

1) Format data frame

Format the data frame
wildlife_impacts %>%
 count(operator)

#>	#	A tibble: 4×2	
#>		operator	n
#>		<chr></chr>	<int></int>
#>	1	AMERICAN AIRLINES	14887
#>	2	DELTA AIR LINES	9005
#>	3	SOUTHWEST AIRLINES	17970
#>	4	UNITED AIRLINES	15116

2) Add geoms

```
# Format the data frame
wildlife_impacts %>%
    count(operator) %>%
# Add geoms
    ggplot() +
    geom_col(
        aes(x = operator, y = n),
        width = 0.7, alpha = 0.8)
```


3) Flip coordinates - can you read the labels?

```
# Format the data frame
wildlife_impacts %>%
    count(operator) %>%
# Add geoms
ggplot() +
geom_col(
    aes(x = operator, y = n),
    width = 0.7, alpha = 0.8) +
# Flip coordinates
coord_flip()
```


3) Flip coordinates - can you read the labels?

4) Reorder factors with reorder()

5) Adjust scales

```
# Format the data frame
wildlife_impacts %>%
    count(operator) %>%
# Add geoms
ggplot() +
geom_col(
    aes(x = n, y = reorder(operator, n)),
    width = 0.7, alpha = 0.8) +
# Adjust x axis scale
scale_x_continuous(
    expand = expansion(mult = c(0, 0.05)))
```


5) Adjust scales - customize break points (if you want)

```
# Format the data frame
wildlife_impacts %>%
    count(operator) %>%
# Add geoms
ggplot() +
geom_col(
    aes(x = n, y = reorder(operator, n)),
    width = 0.7, alpha = 0.8) +
# Adjust x axis scale
scale_x_continuous(
    expand = expansion(mult = c(0, 0.05)),
    breaks = c(0, 10000, 20000),
    limits = c(0, 20000))
```


6) Adjust theme

Four cowplot themes you should know

6) Adjust theme

For horizontal bars, add only vertical grid

```
# Format the data frame
wildlife_impacts %>%
    count(operator) %>%
# Add geoms
ggplot() +
geom_col(
    aes(x = n, y = reorder(operator, n)),
    width = 0.7, alpha = 0.8) +
```

```
# Adjust x axis scale
    scale_x_continuous(
        expand = expansion(mult = c(0, 0.05))) +
```

Adjust theme
 theme_minimal_vgrid()

7) Annotate

```
# Format the data frame
wildlife_impacts %>%
  count(operator) %>%
  mutate(operator = str to title(operator)) %>9
# Add geoms
  ggplot() +
  geom_col(
      aes(x = n, y = reorder(operator, n)),
      width = 0.7, alpha = 0.8) +
# Adjust x axis scale
  scale x continuous(
    expand = expansion(mult = c(0, 0.05))) +
# Adjust theme
  theme_minimal_vgrid() +
# Annotate
  labs(
    x = 'Count',
    y = NULL)
```


Finished product

```
wildlife_impacts %>%
  count(operator) %>%
  mutate(operator = str_to_title(operator)) %>%
  ggplot() +
  geom_col(
     aes(x = n, y = reorder(operator, n)),
     width = 0.7, alpha = 0.8) +
  scale_x_continuous(
     expand = expansion(mult = c(0, 0.05))) +
  theme_minimal_vgrid() +
  labs(
     x = 'Count',
     y = NULL)
```


Your turn

Use the gapminder.csv data to create the following plot, following these steps:

Format data frame
 Add geoms
 Flip coordinates?
 Reorder factors?
 Adjust scales
 Adjust theme
 Annotate

