class: middle, inverse .leftcol30[ <center> <img src="https://eda.seas.gwu.edu/images/logo.png" width=250> </center> ] .rightcol70[ # Week 7: .fancy[Factors, Amounts, & Proportions] ###
EMSE 4572 / 6572: Exploratory Data Analysis ###
John Paul Helveston ###
October 09, 2024 ] --- class: inverse, middle # Next projects due: ## - [Mini project 2](https://eda.seas.gwu.edu/2024-Fall/mini/2-exploring-data.html): Exploring Data (Due 10/15) ## - [Project Progress Report](https://eda.seas.gwu.edu/2024-Fall/project/2-progress-report.html) (Due 10/27) --- ## Today's data ``` r avengers <- read_csv(here('data', 'avengers.csv')) bears <- read_csv(here('data', 'north_america_bear_killings.csv')) federal_spending <- read_csv(here('data', 'fed_spend_long.csv')) gapminder <- read_csv(here('data', 'gapminder.csv')) lotr_words <- read_csv(here('data', 'lotr_words.csv')) milk_production <- read_csv(here('data', 'milk_production.csv')) wildlife_impacts <- read_csv(here('data', 'wildlife_impacts.csv')) ``` ## New packages The [{waffle} package](https://github.com/hrbrmstr/waffle) ``` r install.packages("waffle") ``` --- class: inverse, middle # Week 7: .fancy[Factors, Amounts, & Proportions] ## 1. Manipulating factors ## 2. Graphing amounts ## BREAK ## 3. Graphing proportions --- class: inverse, middle # Week 7: .fancy[Factors, Amounts, & Proportions] ## 1. .orange[Manipulating factors] ## 2. Graphing amounts ## BREAK ## 3. Graphing proportions --- class: center # Sorting in ggplot is done by reordering factors .leftcol[ <center> <img src="images/check-bad.png" width=75> <img src="figs/federal_spending_bars_unsorted.png"> <center> ] .rightcol[ <center> <img src="images/check-good.png" width=100> <img src="figs/federal_spending_bars.png"> <center> ] --- ## .center[Two ways to sort] **Method 1**: Use `reorder()` inside aesthetic mapping .leftcol60[.code70[ ``` r # Format the data frame federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% # Make the chart ggplot() + geom_col( aes( x = rd_budget_bil, * y = reorder(department, rd_budget_bil) ), width = 0.7, alpha = 0.8, fill = "steelblue" ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/federal_spending_bars.png"> <center> ] --- ## .center[Two ways to sort] **Method 2**: Use `fct_reorder()` when formatting the data frame .leftcol60[.code70[ ``` r # Format the data frame federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( * department = fct_reorder(department, rd_budget_bil) ) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department), width = 0.7, alpha = 0.8, fill = "steelblue" ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/federal_spending_bars.png"> <center> ] --- class: middle .leftcol60[ ## Reorder & modify factors with<br>the **forcats** library Loaded with `library(tidyverse)` ] .rightcol40[ <center> <img src="images/forcats.png" width=400> </center> ] --- class: inverse, middle ## Common situations for modifying / reording factors: ### 1. Reorder factors based on another numerical variable ### 2. Reorder factors manually ### 3. Modify factors manually ### 4. What if there are too many factor levels? --- ### 1. Reorder factors based on another **numerical variable** .leftcol60[.code70[ Use `fct_reorder()` ``` r # Format the data frame federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( * department = fct_reorder(department, rd_budget_bil) ) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department), width = 0.7, alpha = 0.8, fill = "steelblue" ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <br> <center> <img src="figs/federal_spending_bars.png"> <center> ] --- ### 2. Reorder factors **manually** .leftcol[.code70[ ``` r # Format the data frame lotr_words %>% pivot_longer( names_to = 'gender', values_to = 'wordCount', cols = Female:Male) %>% # Make the chart ggplot() + geom_col( aes(x = wordCount, y = Film), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ <center> <img src="figs/lotr_bars.png"> <center> ] --- ### 2. Reorder factors **manually** with `fct_relevel()` .leftcol[.code70[ ``` r # Format the data frame lotr_words %>% pivot_longer( names_to = 'gender', values_to = 'wordCount', cols = Female:Male) %>% * mutate( * Film = fct_relevel(Film, levels = c( * 'The Fellowship Of The Ring', * 'The Two Towers', * 'The Return Of The King'))) %>% # Make the chart ggplot() + geom_col( aes(x = wordCount, y = Film), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ <center> <img src="figs/lotr_bars_relevel.png"> <center> ] --- ### 3. Modify factors manually .leftcol[.code70[ <br> ``` r # Format the data frame lotr_words %>% pivot_longer( names_to = 'gender', values_to = 'wordCount', cols = Female:Male) %>% # Make the chart ggplot() + geom_col( aes(x = wordCount, y = Film), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ .center[.red[The film names here are too long]] <center> <img src="figs/lotr_bars.png"> <center> ] --- ### 3. Modify factors manually with `fct_recode()` `"new label" = "old label"` .leftcol60[.code70[ ``` r # Format the data frame lotr_words %>% pivot_longer( names_to = 'gender', values_to = 'wordCount', cols = Female:Male) %>% * mutate( * Film = fct_recode(Film, * 'The Fellowship\nof the Ring' = 'The Fellowship Of The Ring', * 'The Return\nof the King' = 'The Return Of The King')) %>% # Make the chart ggplot() + geom_col( aes(x = wordCount, y = Film), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/lotr_bars_recode.png"> <center> ] --- ### 2 & 3. Modify and reorder factors manually .leftcol60[.code70[ ``` r # Format the data frame lotr_words %>% pivot_longer( names_to = 'gender', values_to = 'wordCount', cols = Female:Male) %>% * mutate( * Film = fct_relevel(Film, levels = c( * 'The Fellowship Of The Ring', * 'The Two Towers', * 'The Return Of The King')), * Film = fct_recode(Film, * 'The Fellowship\nof the Ring' = 'The Fellowship Of The Ring', * 'The Return\nof the King' = 'The Return Of The King')) %>% # Make the chart ggplot() + geom_col( aes(x = wordCount, y = Film), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/lotr_bars_relevel_recode.png"> <center> ] --- ### 4. What if there are too many factor levels? .leftcol55[.code70[ ``` r # Format the data frame federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( * department = fct_reorder(department, rd_budget_bil) ) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department), width = 0.7, alpha = 0.8, fill = "steelblue" ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol45[ <center> <img src="figs/federal_spending_bars.png"> <center> ] --- ### 4. What if there are too many factor levels? **Strategy**: Merge smaller factors into "Other" with `fct_other()` .leftcol60[.code70[ ``` r # Format the data frame federal_spending %>% * mutate( * department = fct_other(department, * keep = c('DOD', 'HHS', 'NIH', 'NASA', 'DOE'))) %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( department = fct_reorder(department, rd_budget_bil)) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department), width = 0.7, alpha = 0.8, fill = "steelblue" ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/federal_spending_bars_top5.png" width=500> </center> ] --- ### 4. What if there are _really_ too many factor levels? .leftcol[.code70[ ``` r # Format the data frame avengers %>% mutate( * name_alias = fct_reorder(name_alias, appearances)) %>% # Make the chart ggplot() + geom_col( aes(x = appearances,y = name_alias), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ <center> <img src="figs/avengers_bars.png" width=500> </center> ] --- ### 4. What if there are _really_ too many factor levels? **Strategy**: Keep top N, drop the rest with `slice()` .leftcol[.code70[ ``` r # Format the data frame avengers %>% mutate( name_alias = fct_reorder(name_alias, appearances)) %>% * arrange(desc(appearances)) %>% * slice(1:10) %>% # Make the chart ggplot() + geom_col( aes(x = appearances, y = name_alias), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ <center> <img src="figs/avengers_bars_top10.png" width=450> </center> ] --- ### 4. What if there are _really_ too many factor levels? `slice()` works with grouping too! .leftcol[.code70[ ``` r # Format the data frame avengers %>% mutate( name_alias = fct_reorder(name_alias, appearances)) %>% * arrange(desc(appearances)) %>% * group_by(gender) %>% * slice(1:10) %>% # Make the chart ggplot() + geom_col( aes( x = appearances, y = name_alias, fill = gender ), width = 0.7, alpha = 0.8 ) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol[ <center> <img src="figs/avengers_bars_top10_gender.png" width=450> </center> ] --- class: inverse ## Your turn - practice manipulating factors Use the `wildlife_impacts` data to create the following plot <center> <img src="figs/wildlife_phase_of_flight_bars.png" width=800> </center>
−
+
15
:
00
--- class: inverse, middle # Week 7: .fancy[Factors, Amounts, & Proportions] ## 1. Manipulating factors ## 2. .orange[Graphing amounts] ## BREAK ## 3. Graphing proportions --- class: inverse, middle, center # Show amounts with: .cols3[ <br> <center> <img src="images/bar.png" width=350> <center> ] .cols3[ <center> <img src="images/dots.png" width=280> <center> ] .cols3[ <center> <img src="images/lollipop.png"> <center> ] --- class: center, middle .cols3[ <center> <img src="images/bar.png"> <center> ## Bar chart <center> <img src="figs/federal_spending_bars.png"> <center> ] .cols3[ <center> <img src="images/dots.png" width=160> <center> ## Dot chart <center> <img src="figs/federal_spending_dots.png"> <center> ] .cols3[ <center> <img src="images/lollipop_rotated.png" width=330> <center> ## Lollipop chart <center> <img src="figs/federal_spending_lollipop.png"> <center> ] --- class: center ## Bars are good for highlighting specific categories <center> <img src="figs/federal_spending_bars_highlight_title.png" width=700> <center> --- ## Use lollipops when: ### - The bars are overwhelming<br> - You're not highlighting categories <!-- Idea from https://www.data-to-viz.com/graph/lollipop.html --> .leftcol[ <center> <img src="figs/life_expectancy_bars.png" width=400> <center> ] .rightcol[ <center> <img src="figs/life_expectancy_lollipop.png" width=400> <center> ] --- class: center ## Or use dots and don't set axis to 0 .leftcol[ <center> <img src="figs/life_expectancy_lollipop.png" width=500> <center> ] .rightcol[ <center> <img src="figs/life_expectancy_dots.png" width=500> <center> ] --- ## How to make a **Bar chart** .leftcol60[.code70[ ``` r # Summarize the data federal_spending %>% group_by(department) %>% summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% * mutate(department = fct_reorder(department, rd_budget_bil)) %>% # Make chart ggplot() + * geom_col( * aes(x = rd_budget_bil, y = department), width = 0.7, alpha = 0.8, fill = 'steelblue') + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() ``` ]] .rightcol40[ <center> <img src="figs/federal_spending_bars.png"> <center> ] --- ## Filling the bars with color .leftcol60[.code70[ ``` r # Summarize the data federal_spending %>% group_by(department) %>% summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( department = fct_reorder(department, rd_budget_bil), * is_dod = if_else( * department == 'DOD', TRUE, FALSE)) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department, * fill = is_dod), width = 0.7, alpha = 0.8) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() + theme(legend.position = 'none') ``` ]] .rightcol40[.center[ The DOD's R&D budget is nearly the same as all other departments combined <center> <img src="figs/federal_spending_bars_highlight_badcolor.png"> <center> ]] --- ## Filling the bars with color .leftcol60[.code70[ ``` r # Summarize the data federal_spending %>% group_by(department) %>% summarise(rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( department = fct_reorder(department, rd_budget_bil), is_dod = if_else( department == 'DOD', TRUE, FALSE)) %>% # Make the chart ggplot() + geom_col( aes(x = rd_budget_bil, y = department, fill = is_dod), width = 0.7, alpha = 0.8) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + * scale_fill_manual(values = c('grey', 'steelblue')) + theme_minimal_vgrid() + theme(legend.position = 'none') ``` ]] .rightcol40[.center[ The DOD's R&D budget is nearly the same as all other departments combined <center> <img src="figs/federal_spending_bars_highlight.png"> <center> ]] --- ## How to make a **Dot chart** .leftcol60[.code70[ Summarize data frame: ``` r # Summarize the data federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( department = fct_reorder(department, rd_budget_bil)) %>% # Make the chart ggplot() + * geom_point( * aes(x = rd_budget_bil, y = department), size = 2.5, color = 'steelblue') + theme_minimal_vgrid() ``` ]] .rightcol40[.center[ **Dot chart** of federal R&D spending by department <center> <img src="figs/federal_spending_dots.png"> <center> ]] --- ## How to make a **Lollipop chart** .leftcol60[.code70[ Summarize data frame: ``` r # Summarize the data federal_spending %>% group_by(department) %>% summarise( rd_budget_bil = sum(rd_budget_mil) / 10^3) %>% mutate( department = fct_reorder(department, rd_budget_bil)) %>% # Make the chart ggplot() + * geom_segment( * aes(x = 0, xend = rd_budget_bil, * y = department, yend = department), color = 'grey') + * geom_point( * aes(x = rd_budget_bil, y = department), size = 2.5, color = 'steelblue') + theme_minimal_vgrid() ``` ]] .rightcol40[.center[ **Lollipop chart** of federal R&D spending by department <center> <img src="figs/federal_spending_lollipop.png"> <center> ]] --- class: inverse, middle
−
+
20
:
00
## Your turn - practice plotting amounts Create the following charts: .leftcol[ Data: `bears` <center> <img src="figs/bear_bars.png" width=500> </center> ] .rightcol[ Data: `milk_production` <center> <img src="figs/milk_dots_top10-1.png"> </center> ] --- class: inverse, center
−
+
05
:
00
# Break! ## Stand up, Move around, Stretch! --- class: inverse, middle # Week 7: .fancy[Factors, Amounts, & Proportions] ## 1. Manipulating factors ## 2. Graphing amounts ## BREAK ## 3. .orange[Graphing proportions] --- class: inverse, middle, center # Show proportions with: .cols3[ <br> <center> <img src="images/bar.png" width=350> <center> ] .cols3[ <center> <img src="images/pie.png" width=300> <center> ] .cols3[ <center> <img src="images/waffles.png"> <center> ] --- class: center, middle .cols3[ <center> <img src="images/bar.png"> <center> ## Bar charts <center> <img src="figs/milk_2017_bars_stacked_rotated.png"> <center> ] .cols3[ <center> <img src="images/pie.png" width=160> <center> ## Pie charts <center> <img src="figs/milk_2017_pie-1.png" width=300> <center> ] .cols3[ <center> <img src="images/waffles.png" width=180> <center> ## Waffle charts <center> <img src="figs/milk_waffle_2017.png" width=300> <center> ] --- ## Stacked bars .leftcol60[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% # Make the chart ggplot() + * geom_col( * aes(x = "", y = milk_produced, fill = state), width = 0.7, alpha = 0.8) + scale_y_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_hgrid() + labs(x = NULL, y = 'Milk produced (lbs)', fill = 'State', title = '2017 Milk Production\nby State') ``` ]] .rightcol40[ <center> <img src="figs/milk_2017_bars_stacked.png" width=320> </center> ] --- ## Stacked bars - Rotated also looks good .leftcol60[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% # Make the chart ggplot() + * geom_col( * aes(x = milk_produced, y = "", fill = state), width = 0.7, alpha = 0.8) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_hgrid() + labs(y = NULL, x = 'Milk produced (lbs)', fill = 'State', title = '2017 Milk Production by State') ``` ]] .rightcol40[ <center> <img src="figs/milk_2017_bars_stacked_rotated.png"> </center> ] --- ## Stacked bars - not great for more than a few categories .leftcol60[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, * keep = c('California', 'Wisconsin', * 'New York', 'Idaho'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) # Make the chart ggplot() + geom_col( aes(x = "", y = milk_produced, fill = state), width = 0.7, alpha = 0.8) + scale_y_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() + labs(x = NULL, y = 'Milk produced (lbs)', fill = 'State', title = '2017 Milk Production\nby State') ``` ]] .rightcol40[ <center> <img src="figs/milk_2017_bars_stacked_toomany.png" width=320> </center> ] --- .leftcol60[.code70[ ## Dodged bars Better for **part-to-whole comparison** ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% mutate(state = fct_reorder(state, milk_produced)) %>% # Make the chart ggplot() + geom_col( aes(x = milk_produced, y = state), width = 0.7, alpha = 0.8) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() + labs(x = 'Milk produced (lbs)', y = 'State', title = '2017 Milk Production by State') ``` ]] .rightcol40[ Okay: <center> <img src="figs/milk_2017_bars_stacked_rotated.png"> </center> Better: <center> <img src="figs/milk_2017_bars_dodged.png"> </center> ] --- .leftcol55[.code70[ ## Dodged bars ``` r milk_production %>% filter(year %in% c(1970, 2017)) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(year, state) %>% summarise(milk_produced = sum(milk_produced)) %>% # Make the chart ggplot() + geom_col( aes(x = milk_produced, y = as.factor(year), fill = state), * position = 'dodge', width = 0.7, alpha = 0.8) + scale_x_continuous( expand = expansion(mult = c(0, 0.05))) + theme_minimal_vgrid() + labs(x = 'Milk produced (lbs)', y = 'Year', fill = 'State', title = '1970 & 2017 Milk Production by State') ``` ]] .rightcol45[ Better for comparing **total**: <center> <img src="figs/milk_compare_bars_stacked.png"> </center> Better for comparing **parts**: <center> <img src="figs/milk_compare_bars_dodged.png"> </center> ] --- ## .center[Where stacking is useful] .leftcol60[ <center> <img src="images/bechdel-stacked.png" width="550"> </center> .font70[https://fivethirtyeight.com/features/the-dollar-and-cents-case-against-hollywoods-exclusion-of-women/] ] .rightcol40[ ### - **2 to 3 groups** ### - Proportions over time ] --- ## .center[Where stacking is useful] .leftcol60[ <center> <img src="images/Coles-Graph.png" width="600"> </center> .font80[https://www.perceptualedge.com/blog/?p=2239] ] .rightcol40[ ### - 2 to 3 groups ### - **Proportions over time** ] --- ## The Notorious P-I-E Start with a bar chart .leftcol60[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% # Make the chart ggplot() + * geom_col( * aes(x = "", y = milk_produced, fill = state), width = 0.7, alpha = 0.8) + theme_minimal_hgrid() + labs(x = NULL, y = 'Milk produced (lbs)', fill = 'State', title = '2017 Milk Production\nby State') ``` ]] .rightcol40[ <img src="figs/unnamed-chunk-31-1.png" width="288" style="display: block; margin: auto;" /> ] --- ## The Notorious P-I-E Convert bar to pie with `coord_polar()` .leftcol55[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% # Make the chart ggplot() + geom_col( aes(x = "", y = milk_produced, fill = state), width = 0.7, alpha = 0.8) + * coord_polar(theta = "y") + theme_minimal_hgrid() + labs(x = NULL, y = 'Milk produced (lbs)', fill = 'State', title = '2017 Milk Production by State') ``` ]] .rightcol45[ <img src="figs/unnamed-chunk-32-1.png" width="504" style="display: block; margin: auto;" /> ] --- .leftcol55[.code70[ ``` r # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% * arrange(desc(state)) %>% * mutate(p = 100*(milk_produced / sum(milk_produced)), * label = str_c(round(p), '%')) %>% # Make the chart ggplot() + geom_col( aes(x = "", y = milk_produced, fill = state), width = 0.7, alpha = 0.8) + * geom_text( * aes(x = "", y = milk_produced, label = label), * color = "white", size = 6, * position = position_stack(vjust = 0.5)) + coord_polar(theta = "y") + * theme_map() + labs(x = NULL, y = NULL, fill = 'State', title = '2017 Milk Production by State') ``` ]] .rightcol45[ ### The Notorious P-I-E Final chart with labels & `theme_map()` <img src="figs/unnamed-chunk-33-1.png" width="504" style="display: block; margin: auto;" /> ] --- class: center ## Pies are still useful if the sum of components matters .cols3[ <center> <img src="images/bundestag-bars-stacked.png" width=250> <center> ] .cols3[ <br> <center> <img src="images/bundestag-bars-dodged.png"> <center> ] .cols3[ <br> <br> <center> <img src="images/bundestag-pie.png"> <center> ] --- class: center ## The best pies are **square pies** <center> <img src="images/square-pies-rule.png" width="700"> </center> .font80[https://eagereyes.org/blog/2016/a-reanalysis-of-a-study-about-square-pie-charts-from-2009] --- .leftcol55[.code70[ ### Waffle plots ``` r *library(waffle) # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% * mutate(milk_produced = milk_produced / 10^9) %>% # Make the chart ggplot() + * geom_waffle( * aes(fill = state, values = milk_produced), * color = "white", size = 1, n_rows = 10) + scale_x_discrete(expand = c(0, 0)) + scale_y_discrete(expand = c(0, 0)) + theme_minimal() + labs(fill = 'State', x = NULL, y = NULL, title = '2017 Milk Production by State', subtitle = '(1 square = 1 billion lbs)') ``` ]] .rightcol45[ **Use values between 100 - 1,000** .font80[(You don't want 1,000,000,000 boxes!)] ``` #> # A tibble: 3 × 2 #> state milk_produced #> <fct> <dbl> #> 1 California 39.8 #> 2 Wisconsin 30.3 #> 3 Other 145. ``` <img src="figs/unnamed-chunk-35-1.png" width="360" style="display: block; margin: auto;" /> ] --- .leftcol55[.code70[ ### Waffle plots ``` r *library(waffle) # Format the data milk_production %>% filter(year == 2017) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% group_by(state) %>% summarise(milk_produced = sum(milk_produced)) %>% mutate(milk_produced = milk_produced / 10^9) %>% # Make the chart ggplot() + geom_waffle( aes(fill = state, values = milk_produced), color = "white", size = 1, n_cols = 10, * flip = TRUE) + scale_x_discrete(expand = c(0, 0)) + scale_y_discrete(expand = c(0, 0)) + theme_minimal() + labs(fill = 'State', x = NULL, y = NULL, title = '2017 Milk Production by State', subtitle = '(1 square = 1 billion lbs)') ``` ]] .rightcol45[ Use `flip = TRUE` for vertical ``` #> # A tibble: 3 × 2 #> state milk_produced #> <fct> <dbl> #> 1 California 39.8 #> 2 Wisconsin 30.3 #> 3 Other 145. ``` <img src="figs/unnamed-chunk-37-1.png" width="216" style="display: block; margin: auto;" /> ] --- .leftcol55[.code70[ ``` r library(waffle) # Format the data milk_production %>% * filter(year %in% c(1970, 2017)) %>% mutate(state = fct_other(state, keep = c('California', 'Wisconsin'))) %>% * group_by(year, state) %>% summarise(milk_produced = sum(milk_produced)) %>% mutate(milk_produced = milk_produced / 10^9) %>% # Make the chart ggplot() + geom_waffle( aes(fill = state, values = milk_produced), color = "white", size = 1, n_rows = 10, flip = TRUE) + * facet_wrap(vars(year), strip.position = 'bottom') + scale_x_discrete(expand = c(0, 0)) + scale_y_discrete(expand = c(0, 0)) + theme_minimal() + labs(fill = 'State', x = NULL, y = NULL, title = '1970 & 2017 Milk Production by State', subtitle = '(1 square = 1 billion lbs)') ``` ]] .rightcol45[ Use `facet_wrap` for side-by-side waffles ``` #> # A tibble: 3 × 2 #> state milk_produced #> <fct> <dbl> #> 1 California 39.8 #> 2 Wisconsin 30.3 #> 3 Other 145. ``` <img src="figs/unnamed-chunk-39-1.png" width="360" style="display: block; margin: auto;" /> ] --- class: center .leftcol[ Stacked bars <center> <img src="figs/milk_compare_bars_stacked.png" width = 450> </center> Dodged bars <center> <img src="figs/milk_compare_bars_dodged.png" width = 450> </center> ] .rightcol[ Pie chart <img src="figs/milk_compare_pie-1.png" width="324" style="display: block; margin: auto;" /> Waffle chart <img src="figs/unnamed-chunk-40-1.png" width="324" style="display: block; margin: auto;" /> ] --- class: inverse
−
+
20
:
00
## Your turn .leftcol[ Using the `wildlife_impacts` data, create plots that shows the proportion of incidents that occur at each different time of day. For this exercise, you can remove `NA` values. Try to create the following plots: - Stacked bars - Dodged bars - Pie chart - Waffle chart ] .rightcol[ To get started, you'll need to first summarize the data: ``` r wildlife_summary <- wildlife_impacts %>% filter(!is.na(time_of_day)) %>% count(time_of_day) wildlife_summary ``` ``` #> # A tibble: 4 × 2 #> time_of_day n #> <chr> <int> #> 1 Dawn 1270 #> 2 Day 25123 #> 3 Dusk 1717 #> 4 Night 12735 ``` ]