

m EMSE 4572/6572: Exploratory Data Analysis

2 John Paul Helveston

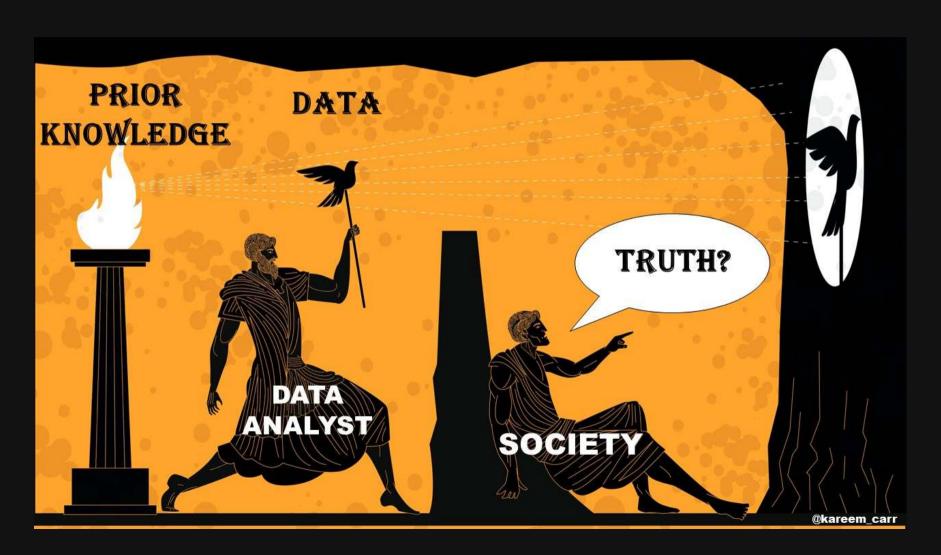
August 27, 2025

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

Course 1: Intro to Programming for Analytics

"Computational Literacy"

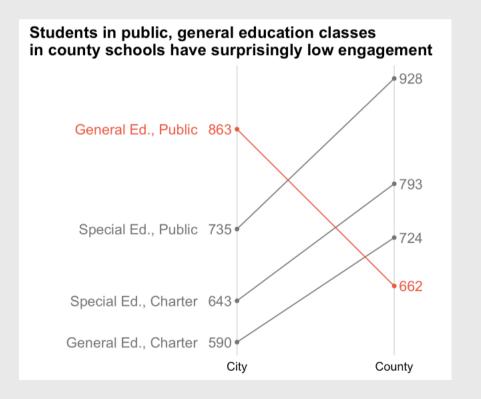

- Programming: Conditionals (if/else), loops, functions, testing, data types.
- Analytics: Data structures, import / export, basic data manipulation & visualization.

Course 2: Exploratory Data Analysis

"Data Literacy"

- Strategies for conducting an exploratory data analysis.
- Design principles for visualizing and communicating *information* extracted from data.
- Reproducibility: Reports that contain code, equations, visualizations, and narrative text.

Class goal: translate data into information


Class goal: translate data into information

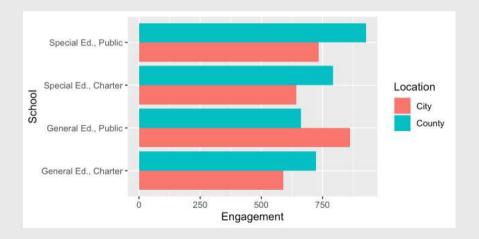
Data

Average student engagement scores

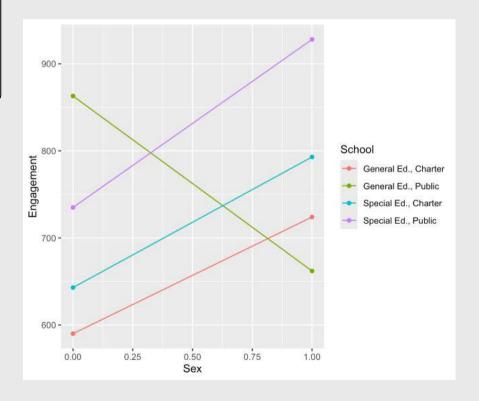
Class	Туре	City	County
Special Ed.	Charter	643	793
Special Ed.	Public	735	928
General Ed.	Charter	590	724
General Ed.	Public	863	662

Information

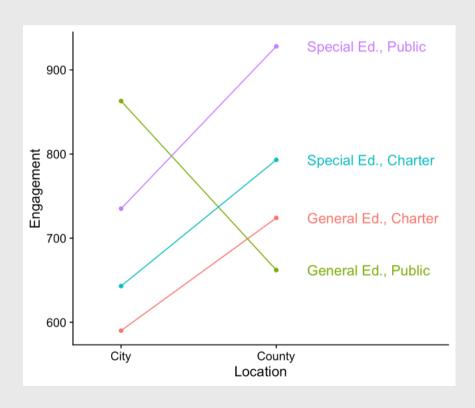
Encode data:

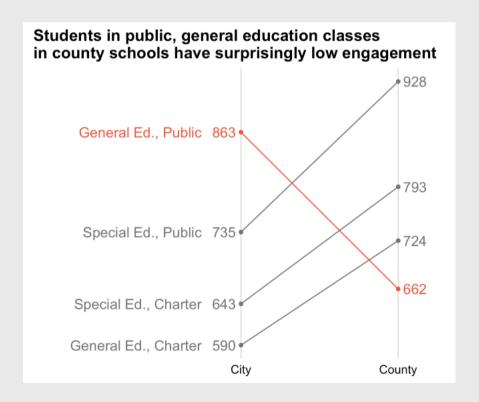

```
#> City County School
#> 1 643 793 Special Ed., Charter
#> 2 735 928 Special Ed., Public
#> 3 590 724 General Ed., Charter
#> 4 863 662 General Ed., Public
```

Re-format data for plotting:

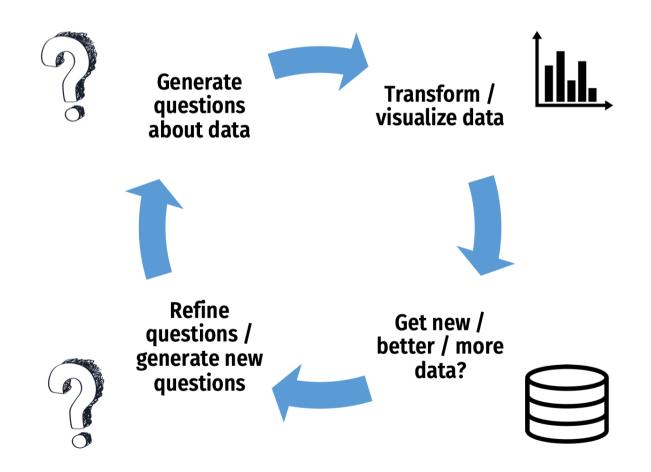

```
engagement_data <- engagement_data %>%
    gather(Location, Engagement, City:County) %>%
    mutate(Location = fct_relevel(
        Location, c('City', 'County')))
engagement_data
```

```
School Location Engagement
#> 1 Special Ed., Charter
                              City
                                          643
#> 2 Special Ed., Public
                              City
                                          735
#> 3 General Ed., Charter
                              City
                                          590
     General Ed., Public
                              City
                                          863
#> 5 Special Ed., Charter
                            County
                                          793
#> 6 Special Ed., Public
                                          928
                            County
#> 7 General Ed., Charter
                            County
                                          724
#> 8 General Ed., Public
                                          662
                            County
```


Initial exploratory plotting:


More exploratory plotting: highlight difference

Directly label figure:


Remove unnecessary axes, change colors, fix labels:

A fully reproducible analysis

Code Plot

```
plot <- ggplot(data, aes(x = x, y = Engagement, group = School, color = Highlight)</pre>
   geom point() +
   geom line() +
   scale color manual(values = c('#757575', '#ed573e')) +
   labs(x = 'Sex', y = 'Engagement',
        title = paste0('Students in public, general education classes\n',
                        'in county schools have surprisingly low engagement')) +
   scale x continuous(limits = c(-1.2, 1.2), labels = c('City', 'County'),
                       breaks = c(0, 1) +
   geom text repel(aes(label = Engagement, color = as.factor(Highlight)),
                                  = subset(engagement, Location == 'County'),
                    data
                    size
                                  = 5,
                    nudge x
                                  = 0.1.
                    segment.color = NA) +
   geom text repel(aes(label = Engagement, color = as.factor(Highlight)),
                                  = subset(engagement, Location == 'City'),
                    data
                    size
                                  = 5,
                    nudge_x
                                  = -0.1
                    segment.color = NA) +
   geom text repel(aes(label = School, color = as.factor(Highlight)),
                                  = subset(engagement, Location == 'City'),
                    data
                    size
                                  = 5,
                                  = -0.25.
                    nudge x
                    hjust
                                  = 1,
                    segment.color = NA) +
   theme cowplot() +
   background_grid(major = 'x') +
   theme(axis.line = element blank(),
          axis.title.x = element blank(),
          axis.title.y = element blank(),
          axis.text.y = element blank(),
          axis.ticks = element blank(),
          legend.position = 'none')
```


- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

Meet your instructor!

John Helveston, Ph.D.

- 2025 Present: Associate Professor, EMSE
- 2018 2025: Assistant Professor, EMSE
- 2016-2018: Postdoc at Institute for Sustainable Energy, Boston University
- 2016: PhD in Engineering & Public Policy at Carnegie Mellon University
- 2015: MS in Engineering & Public Policy at Carnegie Mellon University
- 2010: BS in Engineering Science & Mechanics at Virginia Tech
- Website: www.jhelvy.com

Meet your tutors!

Pingfan Hu

- Graduate Teaching Assistant (GTA)
- PhD student in EMSE
- Website: www.pingfanhu.com

Meet your tutors!

Bogdan Bunea

- Learning Assistant (LA)
- EMSE Junior & P4A / EDA alumni
- Check out his team's project from 2023

Prerequisites

EMSE 4574 / 6574: Intro to Programming for Analytics

You should be able to:

- Use RStudio to write basic R commands.
- Know the distinctions between different R operators and data types, including numeric, string, and logical data.
- Use **tidyverse** functions to wrangle and manipulate data in R.
- Use the **ggplot2** library to create plots in R.

m Check out R for Analytics Primer

Course website

Everything you need will be on the course website: https://eda.seas.gwu.edu/2025-Fall/

The schedule is the best starting point

Quizzes (10% of grade)

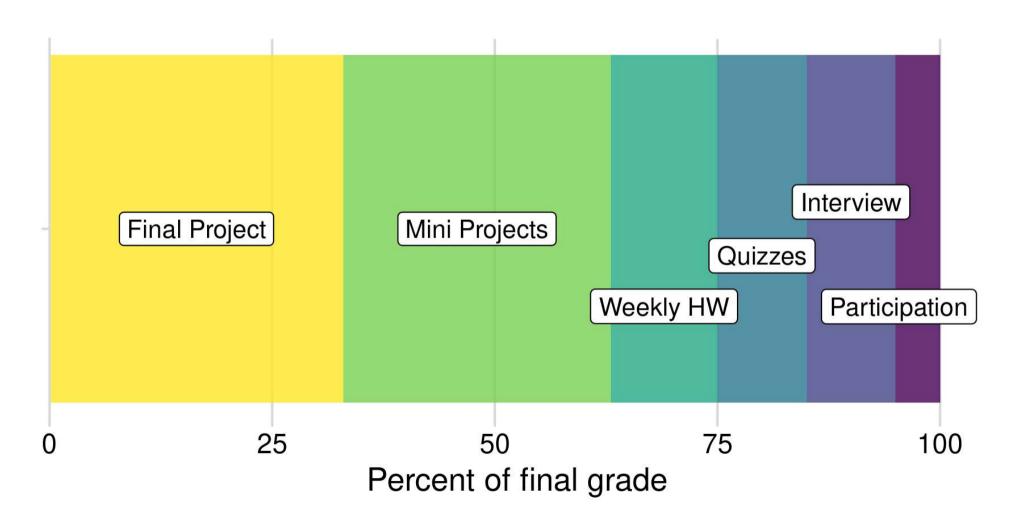
- At the start of class every other week-ish. Make ups only for excused absences (i.e. don't be late).
- © 10 minutes

Why quiz at all? The "retrieval effect" - basically, you have to *practice* remembering things, otherwise your brain won't remember them (see the book "Make It Stick: The Science of Successful Learning")

Assignments

- 1) 🖪 Weekly Homework / Readings: HW1
- 2) 🗯 3 Mini Projects (due 2 weeks from date assigned)
- 3) **Final Project**

Undergrads: Teams of 3 - 4 students


Grads: Teams of 2 students

Item	Due Date
Proposal	Sep 21
Progress Report	Oct 26
Final Report	Dec 07
Presentation	Dec 09

Grades

Item	Weight	Notes
Participation / Attendance	5%	(Yes, I take attendance)
Reflections	12 %	Weekly assignment, lowest dropped)
Quizzes	10 %	5 quizzes, lowest dropped
Mini Project 1	10 %	Individual assignments
Mini Project 2	10 %	
Mini Project 3	10 %	
Final Project: Proposal	6 %	
Final Project: Progress Repor	t 6 %	
Final Project: Report	15 %	
Final Project: Presentation	6 %	
Final Interview	10 %	Individual interview

Grades

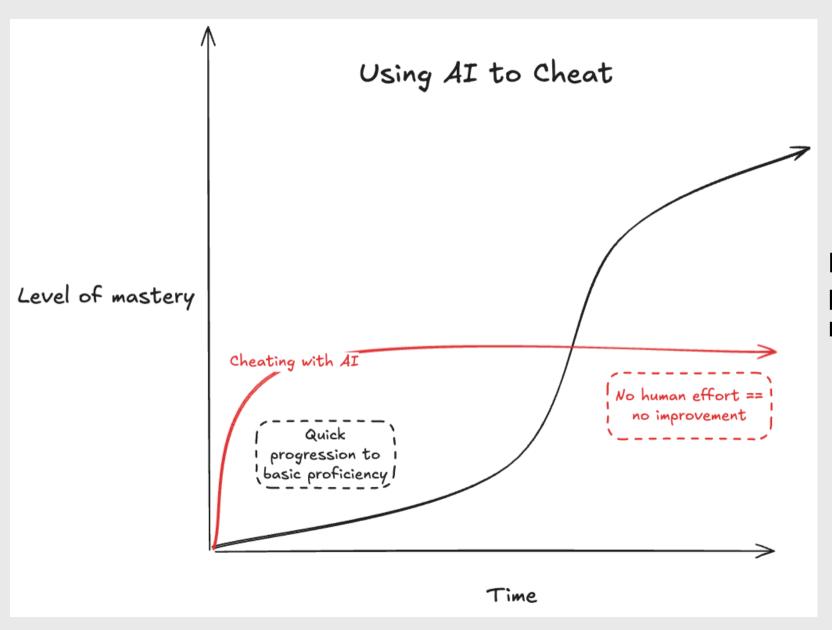
Course policies

- BE NICE
- BE HONEST
- DON'T CHEAT

Copying is good, stealing is bad

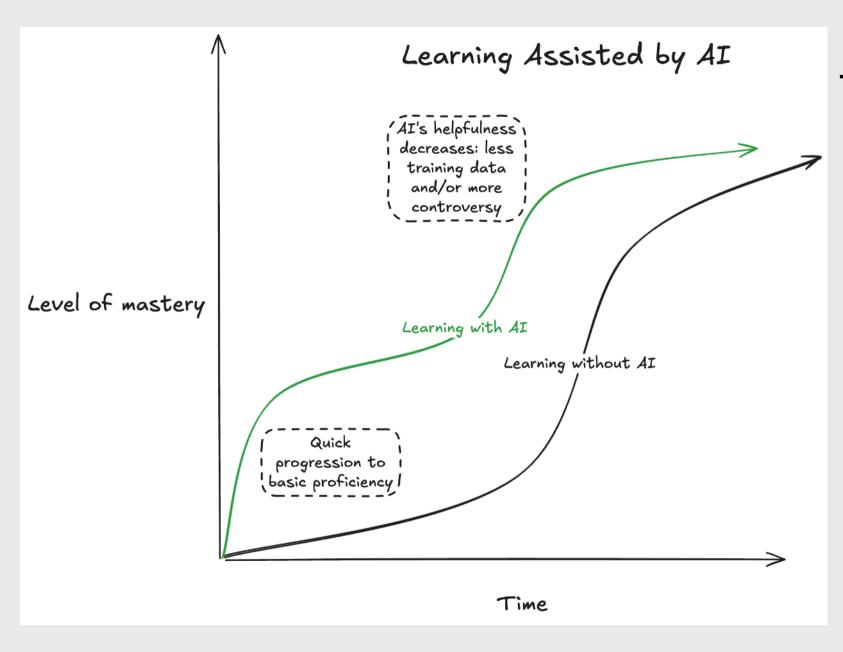
"Plagiarism is trying to pass someone else's work off as your own. Copying is about reverse-engineering."

-- Austin Kleon, from Steal Like An Artist


Use of chatGPT and other AI tools

- Large language models (LLMs) are pretty good
- Sometimes they suck.
- I will grade whatever you submit. It should not suck.

Ways to not have your work suck:


- Don't submit code that doesn't run (actually run it before submitting it).
- Actually read what the Al generates, and don't submit something you don't understand. (Ask the LLM how it works)
- There are dozens of ways to do things you should use the approach I teach.
- Ask yourself "what would I ask Prof. Helveston?"

Use Al as an assistant, not a solutions manual

The **wrong** ways to use LLMs

Don't copy-paste past the basics - it'll rob you of mastery

The **right** way to use LLMs

- Asking to explain error messages
- Asking to explain why something works or doesn't work

Late submissions

- 3 late days use them anytime, no questions asked
- No more than 2 late days on any one assignment
- Contact me for special cases

How to succeed in this class

- Participate during class!
- Start assignments early and read carefully!
- Actually read (before class)!
- Get sleep and take breaks often!
- Ask for help!

Getting Help

Use Slack to ask questions.

- **★** Meet with your tutors
- Schedule a meeting w/Prof. Helveston:
 - Mondays from 8:00-4:30pm
 - Tuesdays from 8:00-4:30pm
 - Fridays from 8:00-4:00pm

</>
</> GW Coders

Course Software

Slack: turn notifications on!

- R & RStudio (Install both)
- Posit Cloud (Register for free!)

Break

- 1. If you haven't already, install everything on the software page
- 2. Stand up, meet each other, (maybe form teams?...use this sheet)

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

Quick demo

- 1. Open quarto_demo.qmd
- 2. Click "Render"

Anatomy of a .qmd file

Header

Markdown text

R code

Define overall document options in header

Basic html page

```
title: Your title
author: Author name
format: html
---
```

Add table of contents, change theme

```
title: Your title
author: Author name
toc: true
format:
  html:
  theme: united
---
```

More on themes at

https://quarto.org/docs/outputformats/html-themes.html

Render to multiple outputs

PDF uses LaTeX

```
---
title: Your title
author: Author name
format: pdf
---
```

If you don't have LaTeX on your computer, install tinytex in R:

```
tinytex::install_tinytex()
```

Microsoft Word

```
---
title: Your title
author: Author name
format: docx
---
```

Anatomy of a .qmd file

Header

Markdown text

R code

Right now, bookmark this!

https://commonmark.org/help/

(When you have 10 minutes, do this! \frac{1}{2})

https://commonmark.org/help/tutorial/

Headers

```
# HEADER 1

## HEADER 2

### HEADER 3

#### HEADER 4

##### HEADER 5

###### HEADER 6
```

HEADER 1

HEADER 2

HEADER 3

HEADER 4

HEADER 5

HEADER 6

Basic Text Formatting

Type this...

- normal text
- _italic text_
- *italic text*
- **bold text**
- ***bold italic text***
- ~~strikethrough~~
- `code text`

..to get this

- normal text
- italic text
- italic text
- bold text
- bold italic text
- strikethrough
- code text

Lists

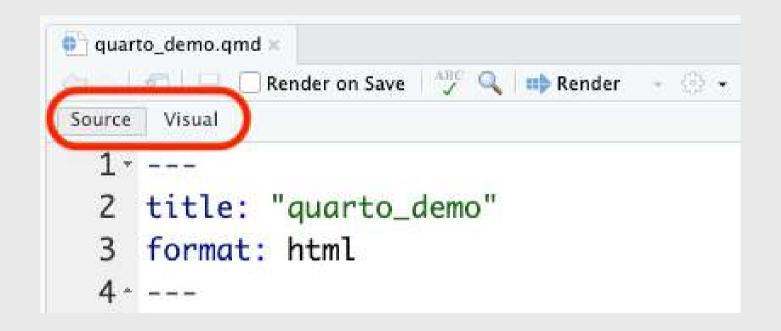
Bullet list:

- first item
- second item
- third item
- first item
- second item
- third item

Numbered list:

- 1. first item
- 2. second item
- 3. third item
- 1. first item
- 2. second item
- 3. third item

Links


Simple **url link** to another site:

```
[Download R](http://www.r-project.org/)
```

Download R

Don't want to use Markdown?

Use Visual Mode!

Anatomy of a .qmd file

Header (think of this as the "settings")

Markdown text

R code

R Code

Inline code

Code chunks

`r insert code here`

```
```{r}
insert code here
insert more code here
```
```

Inline R code

```
The sum of 3 and 4 is r 3 + 4
```

Produces this:

The sum of 3 and 4 is 7

R Code chunks

This code chunk...

```
```{r}
library(palmerpenguins)
head(penguins)
```
```

...will produce this when compiled:

```
library(palmerpenguins)
head(penguins)
```

```
#> # A tibble: 6 × 8
                      bill_length_mm bill_d
    species island
                               <dbl>
    <fct> <fct>
  1 Adelie Torgersen
                                39.1
  2 Adelie Torgersen
                                39.5
#> 3 Adelie Torgersen
                                40.3
#> 4 Adelie Torgersen
                                NA
#> 5 Adelie Torgersen
                                36.7
#> 6 Adelie Torgersen
                                39.3
```

Chunk options

Control what chunks output using options

All options here

| option | default | effect |
|------------|----------|---|
| eval | TRUE | Whether to evaluate the code and include its results |
| echo | TRUE | Whether to display code along with its results |
| warning | TRUE | Whether to display warnings |
| error | FALSE | Whether to display errors |
| message | TRUE | Whether to display messages |
| tidy | FALSE | Whether to reformat code in a tidy way when displaying it |
| results | "markup" | "markup", "asis", "hold", or "hide" |
| cache | FALSE | Whether to cache results for future renders |
| comment | "##" | Comment character to preface results with |
| fig.width | 7 | Width in inches for plots created in chunk |
| fig.height | 7 | Height in inches for plots created in chunk |

Chunk output options

By default, code chunks print code + output

```
'``{r}
#| echo: false
cat('hello world!')
```
```

```
```{r}
#| eval: false
cat('hello world!')
```
```

```
```{r}
#| include: false
cat('hello world!')
```
```

Prints only **output** (doesn't show code)

Prints only **code** (doesn't run the code)

Runs, but doesn't print anything

```
#> hello world!
```

```
cat('hello world!')
```

# A global setup chunk 💜

```
```{r}
  label: setup
  include: false
knitr::opts chunk$set(
    warning = FALSE,
    message = FALSE,
    fig.path = "figs/",
    fig.width = 7.252,
    fig.height = 4,
    comment = "#>",
    fig.retina = 3
, , ,
```

- Typically the first chunk
- All following chunks will use these options (i.e., sets global chunk options)
- You can (and should) use individual chunk options too
- Often where I load libraries, etc.

Week 1: Getting Started

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

Workflow for reading in data

1) Use R Projects (.Rproj files) to organize your analysis - don't double-click .R files!

2) Use the here package to create file paths

```
path <- here::here("folder", "file.csv")</pre>
```

3) Import data with these functions:

File type	Function	Library
• CSV	read_csv()	readr
.txt	<pre>read.table()</pre>	utils
.xlsx	<pre>read_excel()</pre>	readxl

Importing Comma Separated Values (.csv)

Read in csv files with read_csv():

```
library(tidyverse)
library(here)

csvPath <- here('data', 'milk_production.csv')
milk_production <- read_csv(csvPath)

head(milk_production)</pre>
```

```
\#>\# A tibble: 6\times4
    region state
                              year milk produced
     <chr> <chr>
                             <ld><ld><
                                            <dbl>
#> 1 Northeast Maine
                              1970
                                        619000000
#> 2 Northeast New Hampshire
                              1970
                                        356000000
#> 3 Northeast Vermont
                              1970
                                      1970000000
#> 4 Northeast Massachusetts 1970
                                        658000000
#> 5 Northeast Rhode Island
                              1970
                                         75000000
#> 6 Northeast Connecticut
                              1970
                                        661000000
```

Importing Text Files (.txt)

Read in *txt files with read table():

```
txtPath <- here('data', 'nasa_global_temps.txt')
global_temps <- read.table(txtPath, skip = 5, header = FALSE)
head(global_temps)</pre>
```

```
#> V1 V2 V3

#> 1 1880 -0.15 -0.08

#> 2 1881 -0.07 -0.12

#> 3 1882 -0.10 -0.15

#> 4 1883 -0.16 -0.19

#> 5 1884 -0.27 -0.23

#> 6 1885 -0.32 -0.25
```

Importing Text Files (.txt)

Read in *txt files with read table():

```
txtPath <- here('data', 'nasa_global_temps.txt')
global_temps <- read.table(txtPath, skip = 5, header = FALSE)
names(global_temps) <- c('year', 'no_smoothing', 'loess') # Add header
head(global_temps)</pre>
```

Importing Excel Files (.xlsx)

Read in *xlsx files with read_excel():

```
library(readxl)

xlsxPath <- here('data', 'pv_cell_production.xlsx')
pv_cells <- read_excel(xlsxPath, sheet = 'Cell Prod by Country', skip = 2)</pre>
```

```
glimpse(pv_cells)
```

```
#> Rows: 25
#> Columns: 10
                     <chr> NA, NA, "1995", "1996", "1997", "1998", "1999", "2000", "2001",
#> $ Year
                     <chr> "Megawatts", NA, "NA", "NA", "NA", "NA", "NA", "2.5", "3", "10",
#> $ China
                     <chr> NA, NA, "NA", "NA", "NA", "NA", "NA", "NA", "NA", "3.5", "8",
  $ Taiwan
#> $ Japan
                     <dbl> NA, NA, 16.4, 21.2, 35.0, 49.0, 80.0, 128.6, 171.2, 251.1, 363.9, 601
                     <chr> NA, NA, "NA", "NA", "NA", "NA", "NA", "NA", "NA", "O",
  $ Malaysia
                                         "NA", "NA", "NA",
  $ Germany
    `South Korea`
                     <chr> NA, NA, "NA", "NA", "NA", "NA", "NA", "NA", "0", "0",
    `United States` <dbl> NA, NA, 34.7500, 38.8500, 51.0000, 53.7000, 60.8000, 75.0000, 100.300
                     <chr> NA, NA, "NA", "NA", "NA", "NA", "NA", "48.20000000000017", "69.80000
  $ Others
                     <dbl> NA, NA, 77.600, 88.600, 125.800, 154.900, 201.300, 276.800, 371.306
  $ World
```

Importing Excel Files (.xlsx)

Read in xlsx files with read excel():

```
library(readxl)
xlsxPath <- here('data', 'pv_cell_production.xlsx')</pre>
pv_cells <- read_excel(xlsxPath, sheet = 'Cell Prod by Country', skip = 2) %>%
 mutate(Year = as.numeric(Year)) %>% # Convert "non-years" to NA
  filter(!is.na(Year)) # Drop NA rows in Year
```

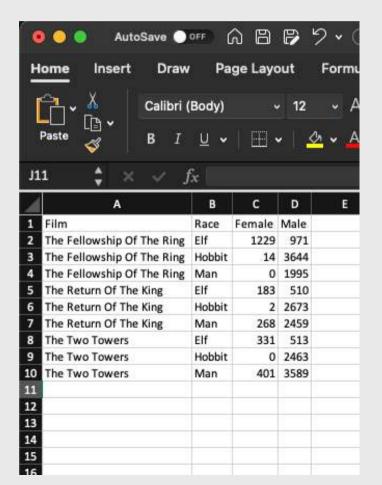
```
glimpse(pv cells)
```

```
#> Rows: 19
#> Columns: 10
#> $ Year
                       <dbl> 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2
                       <chr> "NA", "NA", "NA", "NA", "NA", "NA", "2.5", "3", "10", "13", "40", "128.3000000000001", "34
#> $ China
                       <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "3.5", "8", "17", "39.29999999999997", "88", "169
#> $ Taiwan
                       <dbl> 16.4, 21.2, 35.0, 49.0, 80.0, 128.6, 171.2, 251.1, 363.9, 601.5, 833.0, 926.4, 937.5,
#> $ Japan
                       <chr> "NA", "NA", "NA", "NA", "NA", "NA", "0", "0", "0", "0", "0", "0", "100.1", "397.9",
<chr> "NA", "NA", "NA", "NA", "NA", "22.5", "23.5", "55", "121.5", "193", "339", "469.1",
#> $ Malaysia
#> $ Germany
     `South Korea`
                       <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "0", "0", "0", "0", "5.3", "13", "31.8839359056740
   $ `United States`
                       <dbl> 34.7500, 38.8500, 51.0000, 53.7000, 60.8000, 75.0000, 100.3000, 120.6000, 103.0000,
#> $ Others
                       <chr> "NA", "NA", "NA", "NA", "NA", "NA", "48.20000000000017", "69.80000000000011", "97.29999999995
                       <dbl> 77.600, 88.600, 125.800, 154.900, 201.300, 276.800, 371.300, 542.000, 749.400, 1198.80
#> $ World
```

Your turn

10:00

Open the practice qmd file.


Write code to import the following data files from the "data" folder:

- For lotr_words.csv, call the data frame lotr
- For north_america_bear_killings.txt, call the data frame bears
- For uspto_clean_energy_patents.xlsx, call the data frame patents

Week 1: Getting Started

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

The data frame... in Excel

The data frame... in 😱

```
lotr
```

```
A tibble: 18 \times 4
      film
#>
                                   race
                                          gend
#>
      <chr>
                                   <chr>
                                           <chr
    1 The Fellowship Of The Ring Elf
                                           Fema
    2 The Fellowship Of The Ring Elf
                                          Male
    3 The Fellowship Of The Ring Hobbit
                                          Fema
    4 The Fellowship Of The Ring Hobbit Male
    5 The Fellowship Of The Ring Man
                                           Fema
    6 The Fellowship Of The Ring Man
                                          Male
                                   Elf
    7 The Return Of The King
                                           Fema
    8 The Return Of The King
                                   Elf
                                          Male
    9 The Return Of The King
                                   Hobbit
                                          Fema
                                   Hobbit Male
      The Return Of The King
   11 The Return Of The King
                                   Man
                                           Fema
   12 The Return Of The King
                                   Man
  13 The Two Towers
                                   Elf
```

Columns: *Vectors* of values (must be same data type)

Extract a column using \$

```
lotr$race

#> [1] "Elf" "Elf" "Hobbit" "Man" "Man" "Elf" "Elf" "Hobbit" "
```

Columns: Vectors of values (must be same data type)

Can also use brackets:

```
lotr$race
    [1] "Elf"
                  "Elf"
                            "Hobbit" "Hobbit" "Man"
                                                          "Man"
                                                                               "Elf"
                                                                    "Elf"
                                                                                         "Hobbit"
lotr[,2]
     A tibble: 18 \times 1
      race
      <chr>
    1 Elf
    2 Flf
    3 Hobbit
    4 Hobbit
    5 Man
    6 Man
    7 Flf
    9 Hobbit
```

Rows: Information about individual observations

Information about the first row:

Information about rows 1 & 2:

```
lotr[1:2,]
```

Quick Practice

Read in the data csv file in the "data" folder:

```
data <- read_csv(here('data', 'data.csv'))</pre>
```

Now answer these questions:

- How many rows and columns are in the data frame?
- What type of data is each column?
- Preview the different columns what do you think this data is about? What might one row represent?
- How many unique airlines are in the data frame?
- What is the shortest and longest air time for any one flight in the data frame?

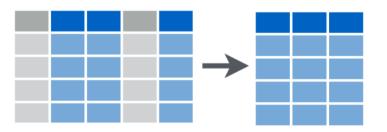
The tidyverse: stringr + dplyr + readr + ggplot2 + ...

Art by Allison Horst

The main dplyr "verbs"

"Verb"	What it does
select()	Select columns by name
filter()	Keep rows that match criteria
arrange()	Sort rows based on column(s)
mutate()	Create new columns
<pre>summarize()</pre>	Create summary values

Core tidyverse concept: Chain functions together with "pipes"



Think of the words "...and then..."

```
data %>%
  do_something() %>%
  do_something_else()
```

Select columns with select()

Subset Variables (Columns)

Select columns with select()

Select the columns film & race

12 The Tue Tours

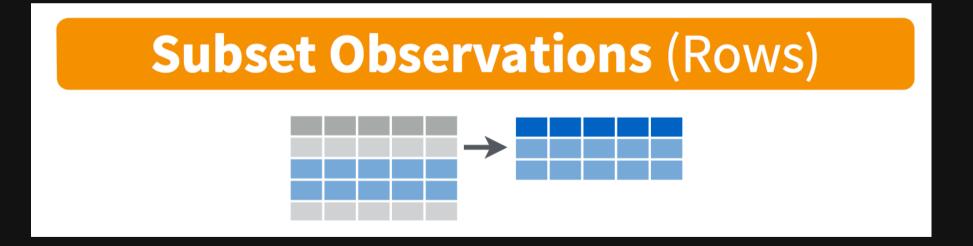
```
lotr %>%
  select(film, race)
```

```
#> # A tibble: 18 × 2
      film
#>
                                 race
    <chr>
                                 <chr>
   1 The Fellowship Of The Ring Elf
   2 The Fellowship Of The Ring Elf
   3 The Fellowship Of The Ring Hobbit
    4 The Fellowship Of The Ring Hobbit
   5 The Fellowship Of The Ring Man
    6 The Fellowship Of The Ring Man
   7 The Return Of The King
                                 Elf
   8 The Return Of The King
                                 Elf
    9 The Return Of The King
                                 Hobbit
  10 The Return Of The King
                                 Hobbit
#> 11 The Return Of The King
                                 Man
#> 12 The Return Of The King
                                 Man
```

C14

Select columns with select()

221


Use the – sign to drop columns

Eamala

```
lotr %>%
 select(-film)
```

```
# A tibble: 18 \times 3
             gender word_count
      race
    <chr> <chr>
                         <dbl>
    1 Elf
             Female
                          1229
    2 Elf
             Male
                           971
   3 Hobbit Female
    4 Hobbit Male
                          3644
    5 Man
          Female
            Male
                          1995
    6 Man
           Female
                           183
    7 Elf
    8 Elf
             Male
                            510
   9 Hobbit Female
  10 Hobbit Male
                           2673
  11 Man
             Female
                           268
             Male
                           2459
#> 12 Man
```

Filter for rows with filter()

Filter for rows with filter()

Keep only the rows with Elf characters

```
lotr %>%
  filter(race == "Elf")
```

```
#> # A tibble: 6 × 4
    film
                                race gender word count
   <chr>
                                <chr> <chr>
                                                 <dbl>
#> 1 The Fellowship Of The Ring Elf
                                     Female
                                                  1229
#> 2 The Fellowship Of The Ring Elf
                                     Male
                                                  971
#> 3 The Return Of The King
                                Elf
                                     Female
                                                 183
                                Elf
#> 4 The Return Of The King
                                                   510
                                     Male
#> 5 The Two Towers
                               Elf
                                     Female
                                                   331
                                Elf
                                     Male
#> 6 The Two Towers
                                                    513
```

Filter for rows with filter()

Keep only the rows with Elf or Hobbit characters

```
lotr %>%
  filter((race == "Elf") | (race == "Hobbit"))
```

```
#> # A tibble: 12 × 4
     film
#>
                                       gender word count
                                race
    <chr>
                                <chr>
                                       <chr>
                                                   <dbl>
   1 The Fellowship Of The Ring Elf
                                                    1229
                                       Female
   2 The Fellowship Of The Ring Elf
                                       Male
                                                    971
   3 The Fellowship Of The Ring Hobbit Female
   4 The Fellowship Of The Ring Hobbit Male
                                                    3644
   5 The Return Of The King
                                Elf
                                      Female
                                                    183
   6 The Return Of The King Elf
                                       Male
                                                     510
   7 The Return Of The King
                                Hobbit Female
   8 The Return Of The King
                                Hobbit Male
                                                    2673
                                       Female
                                Elf
                                                     331
   9 The Two Towers
                                                     513
                                       Male
     The Two Towers
                                Hobbit Female
     The Two Towers
                                Hobbit Male
                                                    2463
#> 12 The Two Towers
```

Filter for rows with filter()

Keep only the rows with Elf or Hobbit characters

```
lotr %>%
   filter(race %in% c("Elf", "Hobbit"))
```

```
#> # A tibble: 12 × 4
     film
#>
                                       gender word count
                                race
    <chr>
                                <chr>
                                       <chr>
                                                   <dbl>
   1 The Fellowship Of The Ring Elf
                                       Female
                                                    1229
   2 The Fellowship Of The Ring Elf
                                       Male
                                                     971
   3 The Fellowship Of The Ring Hobbit Female
   4 The Fellowship Of The Ring Hobbit Male
                                                    3644
   5 The Return Of The King
                                Elf
                                       Female
                                                     183
   6 The Return Of The King Elf
                                       Male
                                                     510
   7 The Return Of The King
                                Hobbit Female
   8 The Return Of The King
                                Hobbit Male
                                                    2673
                                       Female
                                Elf
                                                     331
   9 The Two Towers
                                                     513
                                       Male
     The Two Towers
                                Hobbit Female
     The Two Towers
                                Hobbit Male
                                                    2463
#> 12 The Two Towers
```

Logic operators for filter()

Description		Examp	ole	
Values greater than 1	value	> 1		
Values greater than or equal to 1	value	>= 1		
Values less than 1	value	< 1		
Values less than or equal to 1	value	<= 1		
Values equal to 1	value	== 1		
Values not equal to 1	value	!= 1		
Values in the set c(1, 4)	value	%in%	c(1,	4)

Combine filter() and select()

Keep only the rows with Elf characters that spoke more than 1000 words, then select everything but the race column

```
lotr %>%
  filter((race == "Elf") & (word_count > 1000)) %>%
  select(-race)
```

Create new variables with mutate()

Create new variables with mutate()

Create a new variable, word1000 which is TRUE if the character spoke 1,000 or more words

```
lotr %>%
  mutate(word1000 = word_count >= 1000)
```

```
#> # A tibble: 18 × 5
    film
                                     gender word count word1000
#>
                               race
     <chr>
                               <chr>
                                     <chr>
                                                 <dbl> <lql>
   1 The Fellowship Of The Ring Elf Female
                                                  1229 TRUE
  2 The Fellowship Of The Ring Elf Male
                                                  971 FALSE
  3 The Fellowship Of The Ring Hobbit Female
                                                   14 FALSE
  4 The Fellowship Of The Ring Hobbit Male
                                                 3644 TRUE
#> 5 The Fellowship Of The Ring Man
                                     Female
                                                     0 FALSE
  6 The Fellowship Of The Ring Man
                                     Male
                                                  1995 TRUE
                               Elf
  7 The Return Of The King
                                     Female
                                                  183 FALSE
  8 The Return Of The King
                               Elf
                                     Male
                                                  510 FALSE
   9 The Return Of The King Hobbit Female
                                                    2 FALSE
#> 10 The Return Of The King
                               Hobbit Male
                                                 2673 TRUE
#> 11 The Return Of The King
                               Man
                                     Female
                                                   268 FALSE
```

Handling if/else conditions

ifelse(<condition>, <if TRUE>, <else>)

```
lotr %>%
  mutate(word1000 = ifelse(word_count >= 1000, TRUE, FALSE))
```

```
#> # A tibble: 18 × 5
    film
#>
                                    gender word count word1000
                              race
#>
  <chr>
                              <chr> <chr>
                                             <dbl> <lql>
  1 The Fellowship Of The Ring Elf Female
                                                1229 TRUE
  2 The Fellowship Of The Ring Elf Male
                                                 971 FALSE
#> 3 The Fellowship Of The Ring Hobbit Female
                                                 14 FALSE
#> 4 The Fellowship Of The Ring Hobbit Male
                                                3644 TRUE
#> 5 The Fellowship Of The Ring Man Female
                                                   0 FALSE
#> 6 The Fellowship Of The Ring Man
                                    Male
                                                1995 TRUE
  7 The Return Of The King
                              Elf Female
                                                 183 FALSE
#> 8 The Return Of The King Elf Male
                                                 510 FALSE
  9 The Return Of The King Hobbit Female
                                                   2 FALSE
#> 10 The Return Of The King
                             Hobbit Male
                                                2673 TRUE
#> 11 The Return Of The King
                              Man
                                    Female
                                                 268 FALSE
#> 12 The Return Of The King
                                    Male
                                                2459 TRUE
                              Man
```

Sort data frame with arrange()

Sort the lotr data frame by word_count

```
lotr %>%
  arrange(word_count)
```

```
#> # A tibble: 18 × 4
      film
                                       gender word count
#>
                                 race
    <chr>
                                 <chr>
                                       <chr>
                                                    <dbl>
   1 The Fellowship Of The Ring Man
                                        Female
   2 The Two Towers
                                 Hobbit Female
   3 The Return Of The King
                                Hobbit Female
   4 The Fellowship Of The Ring Hobbit Female
   5 The Return Of The King
                                 Elf
                                        Female
                                                      183
   6 The Return Of The King
                                        Female
                                                     268
                                Man
                                 Elf
                                        Female
                                                      331
    7 The Two Towers
   8 The Two Towers
                                Man
                                        Female
                                                     401
                                 Elf
                                       Male
                                                     510
   9 The Return Of The King
                                 Elf
                                                      513
  10 The Two Towers
                                       Male
#> 11 The Fellowship Of The Ring Elf
                                                      971
                                       Male
#> 12 The Fellowship Of The Ring Elf
                                        Female
                                                     1229
  12 The Fellouchin Of The Ding Man
                                                     1005
```

Sort data frame with arrange()

Use the desc() function to sort in descending order

```
lotr %>%
  arrange(desc(word_count))
```

```
# A tibble: 18 \times 4
      film
                                        gender word count
#>
                                 race
    <chr>
                                 <chr> <chr>
                                                    <dbl>
   1 The Fellowship Of The Ring Hobbit Male
                                                     3644
                                        Male
                                                     3589
   2 The Two Towers
                                 Man
   3 The Return Of The King Hobbit Male
                                                     2673
   4 The Two Towers
                                Hobbit Male
                                                     2463
   5 The Return Of The King
                                        Male
                                                     2459
                                 Man
   6 The Fellowship Of The Ring
                                                      1995
                                 Man
                                        Male
   7 The Fellowship Of The Ring Elf
                                        Female
                                                      1229
   8 The Fellowship Of The Ring Elf
                                        Male
                                                      971
    9 The Two Towers
                                 Elf
                                        Male
                                                      513
                                 Elf
                                                      510
  10 The Return Of The King
                                        Male
#> 11 The Two Towers
                                 Man
                                        Female
                                                      401
                                 Elf
#> 12 The Two Towers
                                         Female
                                                       331
  10 The Deturn Of The Vine
                                        Eamala
                                                       260
```

Your turn

Read in the data csv file in the "data" folder:

```
data <- read_csv(here('data', 'data.csv'))</pre>
```

Now answer these questions:

- Create a new data frame, flights_fall, that contains only flights that departed in the fall semester.
- Create a new data frame, flights_dc, that contains only flights that flew to DC airports (Reagan or Dulles).
- Create a new data frame, flights_dc_carrier, that contains only flights that flew to DC airports (Reagan or Dulles) and only the columns about the month and airline.
- How many unique airlines were flying to DC airports in July?
- Create a new variable, speed, in miles per hour using the time (minutes) and distance (miles) variables.
- Which flight flew the fastest?
- Remove rows that have NA for air_time and re-arrange the resulting data frame based on the longest air time and longest flight distance.

Week 1: Getting Started

- 1. Course Goal
- 2. Course Introduction
- 3. Break: Install Stuff
- 4. Quarto
- 5. Workflow & Reading In Data
- 6. Wrangling Data
- 7. Visualizing Data

MAKING A GRAPH WITH GGPI OT2 Customise the look of your plot with themes (pre-made or your own!): + theme bw() Heavy birds have longer wings Add labels and titles: + labs(x = "Body weight (g)", y = "Wingspan (cm)", title = "Heavy birds have longer wings") Specify the type of graph and the variables to use: + geom_point(aes(x = body.weight, y = wingspan)) Plot the device containing your data: applot(data = birds) Heavy birds have longer wings Body weight (g)

"Grammar of Graphics"

Concept developed by Leland Wilkinson (1999)

ggplot2 package developed by Hadley Wickham (2005)

Making plot layers with ggplot2

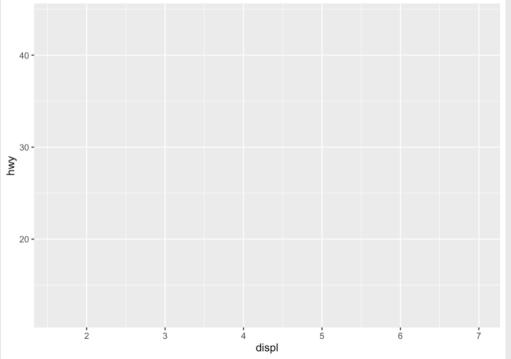
- 1. The data
- 2. The aesthetic mapping (what goes on the axes?)
- 3. The geometries (points? bars? etc.)
- 4. The annotations / labels
- 5. The theme

Layer 1: The data

head(mpg)

```
#> # A tibble: 6 × 11
     manufacturer model displ year
                                        cyl trans
                                                       drv
                                                                cty
                                                                      hwy fl
                                                                                 class
     <chr>
                  <chr> <dbl> <int> <int> <chr>
                                                       <chr> <int> <int> <chr> <chr>
#> 1 audi
                                          4 auto(15)
                                                                       29
                  a4
                           1.8
                               1999
                                                                 18
                                                                                 compact
                                                                       29
#> 2 audi
                                1999
                                          4 manual(m5) f
                   a4
                           1.8
                                                                                 compact
#> 3 audi
                                2008
                                          4 manual(m6) f
                                                                       31 p
                                                                                 compact
                   a4
                                                                 20
                                          4 auto(av)
                                                                       30
#> 4 audi
                   a4
                                2008
                                                                 21
                                                                                 compact
                                                                       26
#> 5 audi
                           2.8
                               1999
                                          6 auto(15)
                                                                 16
                   a4
                                                                                 compact
                                          6 manual(m5) f
  6 audi
                           2.8
                                1999
                                                                 18
                                                                       26 p
                                                                                 compact
                   a4
```

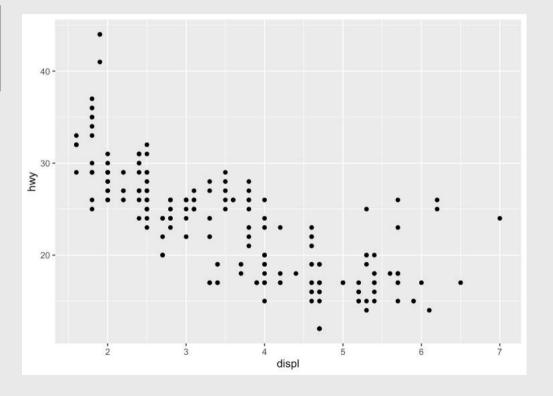
Layer 1: The data


The ggplot() function initializes the plot with whatever data you're using

```
mpg %>%
  ggplot()
```

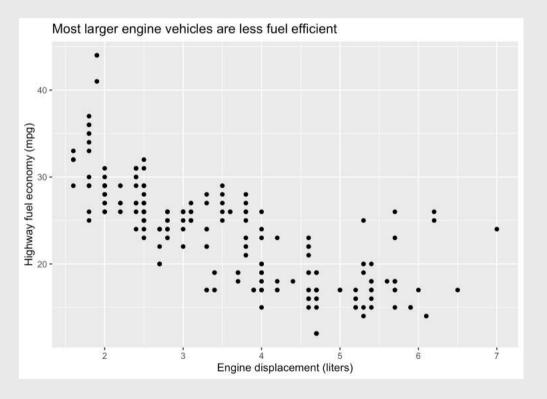
Layer 2: The aesthetic mapping

The aes () function determines which variables will be *mapped* to the geometries (e.g. the axes)

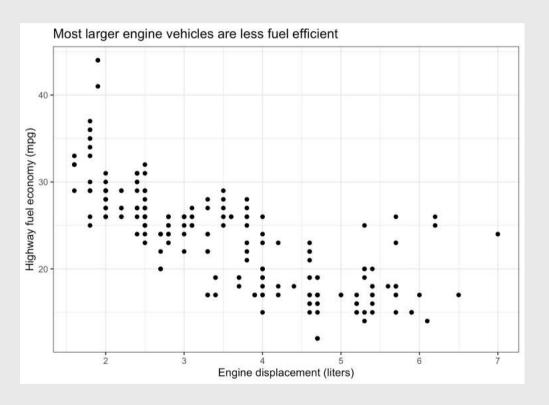

```
mpg %>%
  ggplot(aes(x = displ, y = hwy))
```


Layer 3: The geometries

Use + to add geometries, e.g. geom_points() for points


```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point()
```


Layer 4: The annotations / labels

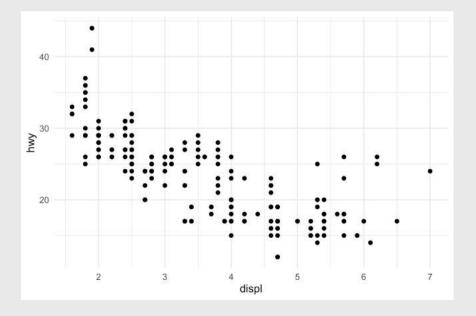

Use labs() to modify most labels

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  labs(
    x = "Engine displacement (liters)",
    y = "Highway fuel economy (mpg)",
    title = "Most larger engine vehicles are
)
```


Layer 5: The theme

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  labs(
    x = "Engine displacement (liters)",
    y = "Highway fuel economy (mpg)",
    title = "Most larger engine vehicles are
) +
  theme_bw()
```


Common themes


theme_bw()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_bw()
```

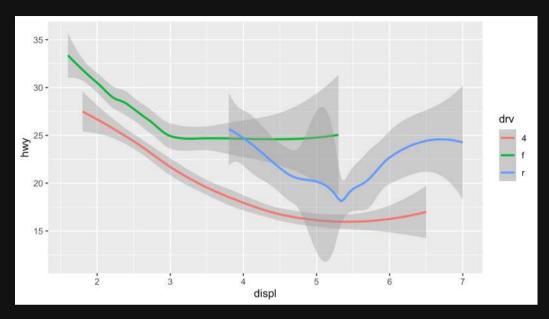
20 - 2 3 4 displ

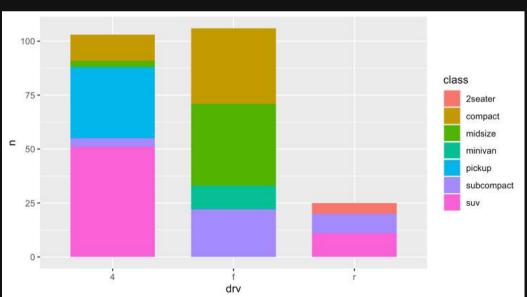
theme_minimal()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_minimal()
```


Common themes

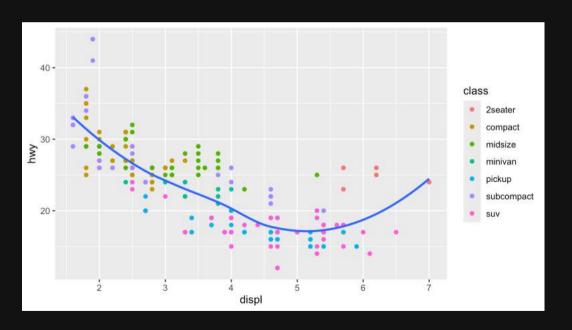
theme_classic()


```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_classic()
```

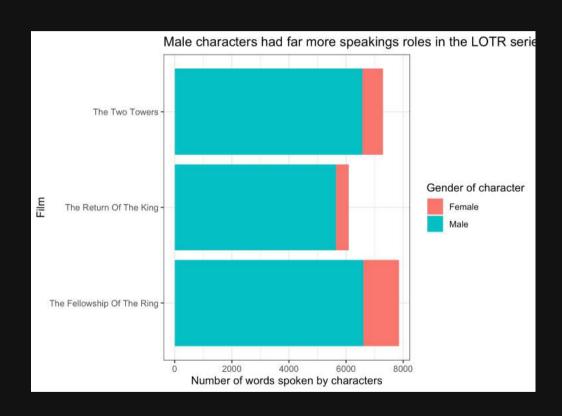

20 displ

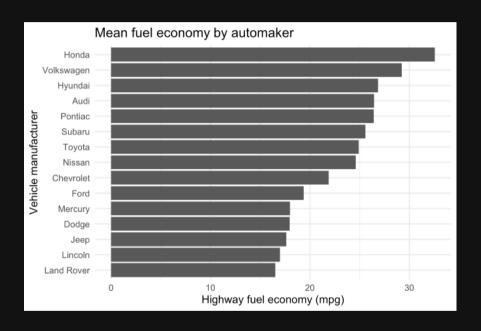
theme_void()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_void()
```

Your turn




Open practice.qmd

Use the mpg data frame and ggplot to create these charts

Extra practice

